

1.1

1.2

1.3

2.1

2.1.1

2.1.1.1

2.1.1.2

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

2.1.1.7

2.1.1.8

2.1.1.9

2.1.1.10

2.1.2

2.1.2.1

2.1.2.2

2.1.2.3

2.1.2.4

2.1.2.5

2.1.2.6

2.1.2.7

2.1.2.8

2.1.2.9

2.1.2.10

2.1.2.11

2.1.2.12

2.1.2.13

2.1.2.14

Table	of	Contents
Introduction

License

Why	Angular?

EcmaScript	6	and	TypeScript	Features

ES6

Classes

Refresher	on	'this'

Arrow	Functions

Template	Strings

Inheritance

Delegation

Constants	and	Block	Scoped	Variables

...spread	and	...rest

Destructuring

Modules

TypeScript

Getting	Started	With	TypeScript

Working	With	tsc

Typings

Linting

TypeScript	Features

TypeScript	Classes

Interfaces

Shapes

Type	Inference

Type	Keyword

Decorators

Property	Decorators

Class	Decorators

Parameter	Decorators

2

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

4.1

4.1.1

4.1.2

5.1

5.1.1

5.1.2

5.1.2.1

5.1.2.2

5.1.2.3

5.1.2.4

5.1.3

5.1.4

5.1.5

6.1

6.1.1

6.1.1.1

6.1.1.2

6.1.2

6.1.2.1

6.1.2.2

6.1.2.3

6.1.2.4

7.1

7.1.1

7.1.2

7.1.3

7.1.4

The	JavaScript	Toolchain

Source	Control:	git

The	Command	Line

Command	Line	JavaScript:	NodeJS

Back-End	Code	Sharing	and	Distribution:	npm

Module	Loading,	Bundling	and	Build	Tasks:	Webpack

Chrome

Bootstrapping	an	Angular	Application

Understanding	the	File	Structure

Bootstrapping	Providers

Components	in	Angular

Creating	Components

Application	Structure	with	Components

Passing	Data	into	a	Component

Responding	to	Component	Events

Using	Two-Way	Data	Binding

Accessing	Child	Components	from	Template

Projection

Structuring	Applications	with	Components

Using	Other	Components

Directives

Attribute	Directives

NgStyle	Directive

NgClass	Directive

Structural	Directives

NgIf	Directive

NgFor	Directive

NgSwitch	Directives

Using	Multiple	Structural	Directives

Advanced	Components

Component	Lifecycle

Accessing	Other	Components

View	Encapsulation

ElementRef

3

8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

8.1.6

8.1.7

8.1.8

9.1

9.1.1

9.1.2

9.1.3

9.1.3.1

9.1.3.2

9.1.3.3

9.1.3.4

10.1

10.1.1

10.1.2

10.1.2.1

10.1.2.2

10.1.2.3

10.1.3

10.1.4

10.1.5

11.1

11.1.1

11.1.2

11.1.3

11.1.4

11.1.5

11.1.6

Observables

Using	Observables

Error	Handling

Disposing	Subscriptions	and	Releasing	Resources

Observables	vs	Promises

Using	Observables	From	Other	Sources

Observables	Array	Operations

Cold	vs	Hot	Observables

Summary

Angular	Dependency	Injection

What	is	DI?

DI	Framework

Angular's	DI

@Inject()	and	@Injectable

Injection	Beyond	Classes

Avoiding	Injection	Collisions:	OpaqueToken

The	Injector	Tree

Http

Making	Requests

Catching	Rejections

Catch	and	Release

Cancel	a	Request

Retry

Search	with	flatMap

Enhancing	Search	with	switchMap

Requests	as	Promises

Change	Detection

Change	Detection	Strategies	in	Angular	1	vs	Angular	2

How	Change	Detection	Works

Change	Detector	Classes

Change	Detection	Strategy:	OnPush

Enforcing	Immutability

Additional	Resources

4

12.1

13.1

13.1.1

13.1.1.1

13.1.1.1.1

13.1.1.1.2

13.1.1.2

13.1.1.2.1

13.1.1.2.2

13.1.2

13.1.2.1

13.1.2.2

14.1

14.1.1

14.1.2

14.1.3

14.1.3.1

14.1.3.2

14.1.4

14.1.4.1

14.1.4.1.1

14.1.4.2

14.1.4.2.1

14.1.4.2.2

14.1.4.3

14.1.4.4

14.1.4.5

15.1

15.1.1

15.1.2

15.1.3

16.1

16.1.1

16.1.2

Zone.js

Advanced	Angular

Directives

Creating	an	Attribute	Directive

Listening	to	an	Element	Host

Setting	Properties	in	a	Directive

Creating	a	Structural	Directive

View	Containers	and	Embedded	Views

Providing	Context	Variables	to	Directives

AoT

AoT	limitations

AoT	Configuration

Immutable.js

What	is	Immutability?

The	Case	for	Immutability

JavaScript	Solutions

Object.assign

Object.freeze

Immutable.js	Basics

Immutable.Map

Map.merge

Nested	Objects

Deleting	Keys

Maps	are	Iterable

Immutable.List

Performance	and	Transient	Changes

Official	Documentation

Pipes

Using	Pipes

Custom	Pipes

Stateful	Pipes

Forms

Getting	Started

Template-Driven	Forms

5

16.1.2.1

16.1.2.2

16.1.2.3

16.1.3

16.1.3.1

16.1.3.2

16.1.3.3

16.1.4

17.1

17.1.1

17.1.2

17.1.3

17.1.4

17.1.5

17.1.6

17.1.7

17.1.8

18.1

18.1.1

18.1.2

18.1.3

18.1.4

18.1.5

18.1.6

18.1.7

18.1.8

18.1.9

18.1.10

19.1

19.1.1

19.1.1.1

19.1.1.2

19.1.1.3

Nesting	Form	Data

Using	Template	Model	Binding

Validating	Template-Driven	Forms

Reactive/Model-Driven	Forms

FormBuilder	Basics

Validating	FormBuilder	Forms

FormBuilder	Custom	Validation

Visual	Cues	for	Users

Modules

What	is	an	Angular	Module?

Adding	Components,	Pipes	and	Services	to	a	Module

Creating	a	Feature	Module

Directive	Duplications

Lazy	Loading	a	Module

Lazy	Loading	and	the	Dependency	Injection	Tree

Shared	Modules	and	Dependency	Injection

Sharing	the	Same	Dependency	Injection	Tree

Routing

Why	Routing?

Configuring	Routes

Redirecting	the	Router	to	Another	Route

Defining	Links	Between	Routes

Dynamically	Adding	Route	Components

Using	Route	Parameters

Defining	Child	Routes

Controlling	Access	to	or	from	a	Route

Passing	Optional	Parameters	to	a	Route

Using	Auxiliary	Routes

State	Management

Redux	and	@ngrx

Adding	@ngrx	to	your	Project

Defining	your	Main	Application	State

Example	Application

6

19.1.1.4

19.1.1.5

19.1.1.6

19.1.1.7

19.1.1.8

19.1.1.9

19.1.1.10

19.1.1.11

19.1.1.12

19.1.1.13

19.1.1.14

20.1

20.1.1

20.1.2

20.1.2.1

20.1.2.2

20.1.2.3

20.1.2.4

20.1.2.5

20.1.3

20.1.4

20.1.5

20.1.5.1

20.1.5.2

20.1.5.2.1

20.1.5.3

20.1.5.4

20.1.6

20.1.6.1

20.1.6.2

20.1.6.2.1

20.1.6.2.2

20.1.6.2.3

20.1.6.3

Reading	your	Application	State	using	Selectors

Actions

Modifying	your	Application	State	by	Dispatching	Actions

Reducers	and	Pure	Functions

Reducers	as	State	Management

Creating	your	Application's	Root	Reducer

Configuring	your	Application

Implementing	Components

Component	Architecture

Side	Effects

Getting	More	From	Redux	and	@ngrx

TDD	Testing

The	Testing	Toolchain

Test	Setup

Filename	Conventions

Karma	Configuration

TestBed	Configuration	(Optional)

Typings

Executing	Test	Scripts

Simple	Test

Using	Chai

Testing	Components

Verifying	Methods	and	Properties

Injecting	Dependencies	and	DOM	Changes

Overriding	Components	for	Testing

Testing	Asynchronous	Actions

Refactoring	Hard-to-Test	Code

Testing	Services

Testing	Strategies	for	Services

Testing	HTTP	Requests

Using	MockBackend

Alternative	Mocking	Strategy

Testing	JSONP	and	XHR	Back-Ends

Executing	Tests	Asynchronously

7

20.1.7

20.1.7.1

20.1.7.2

20.1.7.3

20.1.7.4

21.1

21.1.1

21.1.1.1

21.1.1.2

21.1.1.3

21.1.2

21.1.3

21.1.4

21.1.4.1

21.1.4.2

21.1.5

21.1.5.1

21.1.5.2

21.1.5.3

21.1.5.4

21.1.5.5

21.1.5.6

21.1.5.7

21.1.5.8

22.1

22.1.1

22.1.1.1

22.1.1.2

22.1.1.3

22.1.1.4

22.1.2

23.1

23.1.1

Testing	Redux

Testing	Simple	Actions

Testing	Complex	Actions

Testing	Reducers

Afterthoughts

Migrating	Angular	1.x	Projects	to	Angular	2

Migration	Prep

Upgrading	To	Angular	1.3+	Style

Using	Webpack

Migrating	To	TypeScript

Choosing	an	Upgrade	Path

Avoiding	Total	Conversion

Using	ng-metadata	(Angular	1.x	Using	2	Style)

Bootstrapping	ng-metadata

Components	and	Services

Using	ng-upgrade	(Angular	1.x	Coexisting	With	Angular	2)

Order	of	Operations

Replacing	Services	with	TypeScript	Classes

Bootstrapping	ng-upgrade

Downgrading	Components

Upgrading	Components

Projecting	Angular	1	Content	into	Angular	2	Components

Transcluding	Angular	2	Components	into	Angular	1	Directives

Injecting	Across	Frameworks

Project	Setup

Webpack

Installation	and	Usage

Loaders

Plugins

Summary

NPM	Scripts	Integration

Angular	CLI

Setup

8

23.1.2

23.1.3

23.1.4

23.1.5

23.1.6

23.1.7

23.1.8

23.1.9

23.1.10

23.1.11

24.1

24.1.1

24.1.2

24.1.2.1

24.1.2.2

24.1.2.3

24.1.3

24.1.3.1

24.1.3.2

24.1.3.3

24.1.3.4

24.1.4

25.1

25.1.1

25.1.2

25.1.3

25.1.4

25.1.4.1

25.1.4.2

26.1

26.2

Creating	a	New	App

Serving	the	App

Creating	Components

Creating	Routes

Creating	Other	Things

Testing

Linting

CLI	Command	Overview

Adding	Third	Party	Libraries

Integrating	an	Existing	App

Accessibility	in	Angular

Why	Make	my	Application	Accessible?

Key	Concerns	of	Accessible	Web	Applications

Semantic	Markup

Keyboard	Accessibility

Visual	Assistance

Testing	for	Accessibility

Is	my	Application	Readable?

Is	my	Application	Predictable?

Is	my	Application	Navigable?

Testing	with	Screen	Readers

Additional	Resources

Internationalization	in	Angular

What	is	the	process	like	and	how	is	involved?

Marking	text	in	our	templates

Extracting	translation	text	using	the	Angular	CLI

How	to	import	the	completed	translation	files

Using	the	AoT	Compiler

Using	the	JiT	Compiler

Glossary

Further	Reading	And	Reference

9

10

Rangle's	Angular	Training	Book

Over	the	last	three	and	a	half	years,	Angular	has	become	the	leading	open	source
JavaScript	application	framework	for	hundreds	of	thousands	of	programmers	around	the
world.	The	"1.x"	version	of	Angular	has	been	widely	used	and	became	extremely	popular	for
complex	applications.	The	new	Angular	2.x	has	also	announced	its	final	release	version.

About	Rangle’s	Angular	Training	Book
We	developed	this	book	to	be	used	as	course	material	for	Rangle's	Angular	training,	but
many	people	have	found	it	to	be	useful	for	learning	Angular	on	their	own.	This	book	will
cover	the	most	important	Angular	topics,	from	getting	started	with	the	Angular	toolchain	to
writing	Angular	applications	in	a	scalable	and	maintainable	manner.

If	you	find	this	material	useful,	you	should	also	consider	registering	for	one	of	Rangle’s
training	courses,	which	facilitate	hands-on	learning	and	are	a	great	fit	for	companies	that
need	to	transition	their	technology	to	Angular,	or	individuals	looking	to	upgrade	their	skills.

Rangle.io	also	has	an	Angular	1.x	book	which	is	geared	towards	writing	Angular	1.x
applications	in	an	Angular	2	style.	We	hope	you	enjoy	this	book.	We	welcome	your	feedback
in	the	Discussion	Area.

Introduction

11

http://angularjs.blogspot.ca/2016/09/angular2-final.html
http://go.rangle.io/angular-2-training
http://go.rangle.io/angular-2-training
http://ngcourse-1.rangle.io/
https://www.gitbook.com/book/rangle-io/ngcourse2/discussions

Introduction

12

License
Creative	Commons	Attribution-ShareAlike	4.0	International	(CC	BY-SA	4.0)

This	is	a	human-readable	summary	of	(and	not	a	substitute	for)	the	license.

You	are	free	to:
Share	—	copy	and	redistribute	the	material	in	any	medium	or	format

Adapt	—	remix,	transform	and	build	upon	the	material	for	any	purpose,	even	commercially.

The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.

Under	the	following	terms:
Attribution	—	You	must	give	appropriate	credit,	provide	a	link	to	the	license,	and	indicate	if
changes	were	made.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that
suggests	the	licensor	endorses	you	or	your	use.

ShareAlike	—	If	you	remix,	transform	or	build	upon	the	material,	you	must	distribute	your
contributions	under	the	same	license	as	the	original.

No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that
legally	restrict	others	from	doing	anything	the	license	permits.

License

13

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Why	Angular?
There	are	many	front-end	JavaScript	frameworks	to	choose	from	today,	each	with	its	own
set	of	trade-offs.	Many	people	were	happy	with	the	functionality	that	Angular	1.x	afforded
them.	Angular	2	improved	on	that	functionality	and	made	it	faster,	more	scalable	and	more
modern.	Organizations	that	found	value	in	Angular	1.x	will	find	more	value	in	Angular	2.

Angular's	Advantages
The	first	release	of	Angular	provided	programmers	with	the	tools	to	develop	and	architect
large	scale	JavaScript	applications,	but	its	age	has	revealed	a	number	of	flaws	and	sharp
edges.	Angular	2	was	built	on	five	years	of	community	feedback.

Angular	2	Is	Easier

The	new	Angular	codebase	is	more	modern,	more	capable	and	easier	for	new	programmers
to	learn	than	Angular	1.x,	while	also	being	easier	for	project	veterans	to	work	with.

With	Angular	1,	programmers	had	to	understand	the	differences	between	Controllers,
Services,	Factories,	Providers	and	other	concepts	that	could	be	confusing,	especially	for
new	programmers.

Angular	2	is	a	more	streamlined	framework	that	allows	programmers	to	focus	on	simply
building	JavaScript	classes.	Views	and	controllers	are	replaced	with	components,	which	can
be	described	as	a	refined	version	of	directives.	Even	experienced	Angular	programmers	are
not	always	aware	of	all	the	capabilities	of	Angular	1.x	directives.	Angular	2	components	are
considerably	easier	to	read,	and	their	API	features	less	jargon	than	Angular	1.x's	directives.
Additionally,	to	help	ease	the	transition	to	Angular	2,	the	Angular	team	has	added	a
	.component		method	to	Angular	1.5,	which	has	been	back-ported	by	community	member
Todd	Motto	to	v1.3.

TypeScript

Angular	2	was	written	in	TypeScript,	a	superset	of	JavaScript	that	implements	many	new
ES2016+	features.

By	focusing	on	making	the	framework	easier	for	computers	to	process,	Angular	2	allows	for
a	much	richer	development	ecosystem.	Programmers	using	sophisticated	text	editors	(or
IDEs)	will	notice	dramatic	improvements	with	auto-completion	and	type	suggestions.	These

Why	Angular?

14

https://toddmotto.com/angular-component-method-back-ported-to-1.3/

improvements	help	to	reduce	the	cognitive	burden	of	learning	Angular	2.	Fortunately	for
traditional	ES5	JavaScript	programmers	this	does	not	mean	that	development	must	be	done
in	TypeScript	or	ES2015:	programmers	can	still	write	vanilla	JavaScript	that	runs	without
transpilation.

Familiarity

Despite	being	a	complete	rewrite,	Angular	2	has	retained	many	of	its	core	concepts	and
conventions	with	Angular	1.x,	e.g.	a	streamlined,	"native	JS"	implementation	of	dependency
injection.	This	means	that	programmers	who	are	already	proficient	with	Angular	will	have	an
easier	time	migrating	to	Angular	2	than	another	library	like	React	or	framework	like	Ember.

Performance	and	Mobile

Angular	2	was	designed	for	mobile	from	the	ground	up.	Aside	from	limited	processing	power,
mobile	devices	have	other	features	and	limitations	that	separate	them	from	traditional
computers.	Touch	interfaces,	limited	screen	real	estate	and	mobile	hardware	have	all	been
considered	in	Angular	2.

Desktop	computers	will	also	see	dramatic	improvements	in	performance	and
responsiveness.

Angular	2,	like	React	and	other	modern	frameworks,	can	leverage	performance	gains	by
rendering	HTML	on	the	server	or	even	in	a	web	worker.	Depending	on	application/site
design	this	isomorphic	rendering	can	make	a	user's	experience	feel	even	more
instantaneous.

The	quest	for	performance	does	not	end	with	pre-rendering.	Angular	2	makes	itself	portable
to	native	mobile	by	integrating	with	NativeScript,	an	open	source	library	that	bridges
JavaScript	and	mobile.	Additionally,	the	Ionic	team	is	working	on	an	Angular	2	version	of
their	product,	providing	another	way	to	leverage	native	device	features	with	Angular.

Project	Architecture	and	Maintenance

The	first	iteration	of	Angular	provided	web	programmers	with	a	highly	flexible	framework	for
developing	applications.	This	was	a	dramatic	shift	for	many	web	programmers,	and	while
that	framework	was	helpful,	it	became	evident	that	it	was	often	too	flexible.	Over	time,	best
practices	evolved,	and	a	community-driven	structure	was	endorsed.

Angular	1.x	tried	to	work	around	various	browser	limitations	related	to	JavaScript.	This	was
done	by	introducing	a	module	system	that	made	use	of	dependency	injection.	This	system
was	novel,	but	unfortunately	had	issues	with	tooling,	notably	minification	and	static	analysis.

Why	Angular?

15

https://www.nativescript.org/

Angular	2.x	makes	use	of	the	ES2015	module	system,	and	modern	packaging	tools	like
webpack	or	SystemJS.	Modules	are	far	less	coupled	to	the	"Angular	way",	and	it's	easier	to
write	more	generic	JavaScript	and	plug	it	into	Angular.	The	removal	of	minification
workarounds	and	the	addition	of	rigid	prescriptions	make	maintaining	existing	applications
simpler.	The	new	module	system	also	makes	it	easier	to	develop	effective	tooling	that	can
reason	better	about	larger	projects.

New	Features

Some	of	the	other	interesting	features	in	Angular	2	are:

Form	Builder
Change	Detection
Templating
Routing
Annotations
Observables
Shadow	DOM

Differences	Between	Angular	1	&	2
Note	that	"Transitional	Architecture"	refers	to	a	style	of	Angular	1	application	written	in	a
way	that	mimics	Angular	2's	component	style,	but	with	controllers	and	directives	instead
of	TypeScript	classes.

Old	School
Angular	1.x

Angular	1.x
Best

Practices

Transitional
Architecture Angular	2

Nested	scopes
("$scope",
watches)

Used
heavily Avoided Avoided Gone

Directives	vs
controllers

Use	as
alternatives Used	together Directives	as

components
Component
directives

Controller	and
service
implementation

Functions Functions ES6	classes ES6
classes

Module	system Angular's
modules

Angular's
modules ES6	modules ES6

modules

Transpiler	required No No TypeScript TypeScript

Why	Angular?

16

Why	Angular?

17

EcmaScript	6	and	TypeScript	Features

Figure:	ES6	and	TypeScript

The	language	we	usually	call	"JavaScript"	is	formally	known	as	"EcmaScript".	The	new
version	of	JavaScript,	known	as	"ES6",	offers	a	number	of	new	features	that	extend	the
power	of	the	language.

ES6	is	not	widely	supported	in	today's	browsers,	so	it	needs	to	be	transpiled	to	ES5.	You
can	choose	between	several	transpilers,	but	we'll	be	using	TypeScript,	which	is	what	the
Angular	team	uses	to	write	Angular.	Angular	makes	use	of	a	number	of	features	of	ES6	and
TypeScript.

EcmaScript	6	and	TypeScript	Features

18

ES6
JavaScript	was	created	in	1995,	but	the	language	is	still	thriving	today.	There	are	subsets,
supersets,	current	versions	and	the	latest	version	ES6	that	brings	a	lot	of	new	features.

Some	of	the	highlights:

Classes
Arrow	Functions
Template	Strings
Inheritance
Constants	and	Block	Scoped	Variables
Spread	and	Rest	operators
Destructuring
Modules

ES6

19

Classes
Classes	are	a	new	feature	in	ES6,	used	to	describe	the	blueprint	of	an	object	and	make
EcmaScript's	prototypical	inheritance	model	function	more	like	a	traditional	class-based
language.

class	Hamburger	{

		constructor()	{

				//	This	is	the	constructor.

		}

		listToppings()	{

				//	This	is	a	method.

		}

}

Traditional	class-based	languages	often	reserve	the	word		this		to	reference	the	current
(runtime)	instance	of	the	class.	In	Javascript		this		refers	to	the	calling	context	and	therefore
can	change	to	be	something	other	than	the	object.

Object
An	object	is	an	instance	of	a	class	which	is	created	using	the		new		operator.	When	using	a
dot	notation	to	access	a	method	on	the	object,		this		will	refer	to	the	object	to	the	left	of	the
dot.

let	burger	=	new	Hamburger();

burger.listToppings();

In	the	snippet	above,	whenever		this		is	used	from	inside	class	Hamburger,	it	will	refer	to
object		burger	.

Changing	Caller	Context
JavaScript	code	can	optionally	supply		this		to	a	method	at	call	time	using	one	of	the
following.

Function.prototype.call(object	[,arg,	...])
Function.prototype.bind(object	[,arg,	...])
Function.prototype.apply(object	[,argsArray])

Classes

20

Classes

21

A	Refresher	on	 	this	
Inside	a	JavaScript	class	we'll	be	using		this		keyword	to	refer	to	the	instance	of	the	class.
E.g.,	consider	this	case:

class	Toppings	{

		...

		formatToppings()	{	/*	implementation	details	*/	}

		list()	{

				return	this.formatToppings(this.toppings);

		}

}

Here		this		refers	to	an	instance	of	the		Toppings		class.	As	long	as	the		list		method	is
called	using	dot	notation,	like		myToppings.list()	,	then		this.formatToppings(this.toppings)	
invokes	the		formatToppings()		method	defined	on	the	instance	of	the	class.	This	will	also
ensure	that	inside		formatToppings	,		this		refers	to	the	same	instance.

However,		this		can	also	refer	to	other	things.	There	are	two	basic	cases	that	you	should
remember.

1.	 Method	invocation:

		someObject.someMethod();

Here,		this		used	inside		someMethod		will	refer	to		someObject	,	which	is	usually	what
you	want.

2.	 Function	invocation:

		someFunction();

Here,		this		used	inside		someFunction		can	refer	to	different	things	depending	on
whether	we	are	in	"strict"	mode	or	not.	Without	using	the	"strict"	mode,		this		refers	to
the	context	in	which		someFunction()		was	called.	This	is	rarely	what	you	want,	and	it
can	be	confusing	when		this		is	not	what	you	were	expecting,	because	of	where	the
function	was	called	from.	In	"strict"	mode,		this		would	be	undefined,	which	is	slightly
less	confusing.

Refresher	on	'this'

22

View	Example

One	of	the	implications	is	that	you	cannot	easily	detach	a	method	from	its	object.	Consider
this	example:

		var	log	=	console.log;

		log('Hello');

In	many	browsers	this	will	give	you	an	error.	That's	because		log		expects		this		to	refer	to
	console	,	but	the	reference	was	lost	when	the	function	was	detached	from		console	.

This	can	be	fixed	by	setting		this		explicitly.	One	way	to	do	this	is	by	using		bind()		method,
which	allows	you	to	specify	the	value	to	use	for		this		inside	the	bound	function.

		var	log	=	console.log.bind(console);

		log('Hello');

You	can	also	achieve	the	same	using		Function.call		and		Function.apply	,	but	we	won't
discuss	this	here.

Another	instance	where		this		can	be	confusing	is	with	respect	to	anonymous	functions,	or
functions	declared	within	other	functions.	Consider	the	following:

class	ServerRequest	{

			notify()	{

					...

			}

			fetch()	{

					getFromServer(function	callback(err,	data)	{

								this.notify();	//	this	is	not	going	to	work

					});

			}

}

In	the	above	case		this		will	not	point	to	the	expected	object:	in	"strict"	mode	it	will	be
	undefined	.	This	leads	to	another	ES6	feature	-	arrow	functions,	which	will	be	covered	next.

Refresher	on	'this'

23

http://jsbin.com/vekawimihe/2/edit?js,console

Arrow	Functions
ES6	offers	some	new	syntax	for	dealing	with		this	:	"arrow	functions".
Arrow	functions	also	make	higher	order	functions	much	easier	to	work	with.

The	new	"fat	arrow"	notation	can	be	used	to	define	anonymous	functions	in	a	simpler	way.

Consider	the	following	example:

		items.forEach(function(x)	{

				console.log(x);

				incrementedItems.push(x+1);

		});

This	can	be	rewritten	as	an	"arrow	function"	using	the	following	syntax:

		items.forEach((x)	=>	{

				console.log(x);

				incrementedItems.push(x+1);

		});

Functions	that	calculate	a	single	expression	and	return	its	values	can	be	defined	even
simpler:

		incrementedItems	=	items.map((x)	=>	x+1);

The	latter	is	almost	equivalent	to	the	following:

		incrementedItems	=	items.map(function	(x)	{

				return	x+1;

		});

There	is	one	important	difference,	however:	arrow	functions	do	not	set	a	local	copy	of		this	,
	arguments	,		super	,	or		new.target	.	When		this		is	used	inside	an	arrow	function
JavaScript	uses	the		this		from	the	outer	scope.	Consider	the	following	example:

Arrow	Functions

24

class	Toppings	{

		constructor(toppings)	{

				this.toppings	=	Array.isArray(toppings)	?	toppings	:	[];

		}

		outputList()	{

				this.toppings.forEach(function(topping,	i)	{

						console.log(topping,	i	+	'/'	+	this.toppings.length);		//	`this`	will	be	undefin

ed

				});

		}

}

var	myToppings	=	new	Toppings(['cheese',	'lettuce']);

myToppings.outputList();

Let's	try	this	code	on	http://jsbin.com.	As	we	see,	this	gives	us	an	error,	since		this		is
undefined	inside	the	anonymous	function.

Now,	let's	change	the	method	to	use	the	arrow	function:

class	Toppings	{

		constructor(toppings)	{

				this.toppings	=	Array.isArray(toppings)	?	toppings	:	[];

		}

		outputList()	{

				this.toppings.forEach((topping,	i)	=>	{

						console.log(topping,	i	+	'/'	+	this.toppings.length)		//	`this`	works!

				});

		}

}

var	myToppings	=	new	Toppings(['cheese',	'lettuce']);

myToppings.outputList();

Let's	try	this	code	on	http://jsbin.com.	Here		this		inside	the	arrow	function	refers	to	the
instance	variable.

Warning	arrow	functions	do	not	have	their	own		arguments		variable,	which	can	be	confusing
to	veteran	JavaScript	programmers.		super		and		new.target		are	also	scoped	from	the	outer
enclosure.

Arrow	Functions

25

http://jsbin.com/qakigoqulo/edit?js,console
http://jsbin.com/tulikutife/edit?js,console

Template	Strings
In	traditional	JavaScript,	text	that	is	enclosed	within	matching		"		or		'		marks	is	considered
a	string.	Text	within	double	or	single	quotes	can	only	be	on	one	line.	There	was	no	way	to
insert	data	into	these	strings.	This	resulted	in	a	lot	of	ugly	concatenation	code	that	looked
like:

var	name	=	'Sam';

var	age	=	42;

console.log('hello	my	name	is	'	+	name	+	'	I	am	'	+	age	+	'	years	old');

ES6	introduces	a	new	type	of	string	literal	that	is	marked	with	back	ticks	(`).	These	string
literals	can	include	newlines,	and	there	is	a	string	interpolation	for	inserting	variables	into
strings:

var	name	=	'Sam';

var	age	=	42;

console.log(`hello	my	name	is	${name},	and	I	am	${age}	years	old`);

There	are	all	sorts	of	places	where	this	kind	of	string	can	come	in	handy,	and	front-end	web
development	is	one	of	them.

Template	Strings

26

Inheritance
JavaScript's	inheritance	works	differently	from	inheritance	in	other	languages,	which	can	be
very	confusing.	ES6	classes	provide	a	syntactic	sugar	attempting	to	alleviate	the	issues	with
using	prototypical	inheritance	present	in	ES5.

To	illustrate	this,	let's	image	we	have	a	zoo	application	where	types	of	birds	are	created.	In
classical	inheritance,	we	define	a	base	class	and	then	subclass	it	to	create	a	derived	class.

Subclassing
The	example	code	below	shows	how	to	derive		Penguin		from		Bird		using	the	extends
keyword.	Also	pay	attention	to	the	super	keyword	used	in	the	subclass	constructor	of
	Penguin	,	it	is	used	to	pass	the	argument	to	the	base	class		Bird	's	constructor.

The		Bird		class	defines	the	method	walk	which	is	inherited	by	the		Penguin		class	and	is
available	for	use	by	instance	of		Penguin		objects.	Likewise	the		Penguin		class	defines	the
method	swim	which	is	not	avilable	to		Bird		objects.	Inheritance	works	top-down	from	base
class	to	its	subclass.

Object	Initialization
The	class	constructor	is	called	when	an	object	is	created	using	the	new	operator,	it	will	be
called	before	the	object	is	fully	created.	A	consturctor	is	used	to	pass	in	arguments	to
initialize	the	newly	created	object.

The	order	of	object	creation	starts	from	its	base	class	and	then	moves	down	to	any
subclass(es).

Inheritance

27

//	Base	Class	:	ES6

class	Bird	{

		constructor(weight,	height)	{

				this.weight	=	weight;

				this.height	=	height;

		}

		walk()	{

				console.log('walk!');

		}

}

//	Subclass

class	Penguin	extends	Bird	{

		constructor(weight,	height)	{

				super(weight,	height);

		}

		swim()	{

				console.log('swim!');

		}

}

//	Penguin	object

let	penguin	=	new	Penguin(...);

penguin.walk();	//walk!

penguin.swim();	//swim!

Below	we	show	how	prototypal	inheritance	was	done	before	class	was	introduced	to
JavaScript.

Inheritance

28

//	JavaScript	classical	inheritance.

//	Bird	constructor

function	Bird(weight,	height)	{

		this.weight	=	weight;

		this.height	=	height;

}

//	Add	method	to	Bird	prototype.

Bird.prototype.walk	=	function()	{

		console.log("walk!");

};

//	Penguin	constructor.

function	Penguin(weight,	height)	{

			Bird.call(this,	weight,	height);

}

//	Prototypal	inheritance	(Penguin	is-a	Bird).

Penguin.prototype	=	Object.create(Bird.prototype);

Penguin.prototype.constructor	=	Penguin;

//	Add	method	to	Penguin	prototype.

Penguin.prototype.swim	=	function()	{

		console.log("swim!");

};

//	Create	a	Penguin	object.

let	penguin	=	new	Penguin(50,10);

//	Calls	method	on	Bird,	since	it's	not	defined	by	Penguin.

penguin.walk();	//	walk!

//	Calls	method	on	Penguin.

penguin.swim();	//	swim!

Inheritance

29

Delegation
In	the	inheritance	section	we	looked	at	one	way	to	extend	a	class	functionality,	there	is
second	way	using	delegation	to	extend	functionality.	With	delegation,	one	object	will	contain
a	reference	to	a	different	object	that	it	will	hand	off	a	request	to	perform	the	functionality.

The	code	below	shows	how	to	use	delegation	with	the		Bird		class	and		Penguin		class.	The
	Penguin		class	has	a	reference	to	the		Bird		class	and	it	delegates	the	call	made	to	it's	walk
method	over	to		Bird	's	walk	method.

//	ES6

class	Bird	{

		constructor(weight,	height)	{

				this.weight	=	weight;

				this.height	=	height;

		}

		walk()	{

				console.log('walk!');

		}

}

class	Penguin	{

		constructor(bird)	{

				this.bird	=	bird;

		}

		walk()	{

				this.bird.walk();

		}

		swim()	{

				console.log('swim!');

		}

}

const	bird	=	new	Bird(...);

const	penguin	=	new	Penguin(bird);

penguin.walk();	//walk!

penguin.swim();	//swim!

A	good	discussion	on	'behaviour	delegation'	can	be	found	here.

Delegation

30

https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch6.md

Constants	and	Block	Scoped	Variables
ES6	introduces	the	concept	of	block	scoping.	Block	scoping	will	be	familiar	to	programmers
from	other	languages	like	C,	Java,	or	even	PHP.	In	ES5	JavaScript	and	earlier,		var	s	are
scoped	to		function	s,	and	they	can	"see"	outside	their	functions	to	the	outer	context.

var	five	=	5;

var	threeAlso	=	three;	//	error

function	scope1()	{

		var	three	=	3;

		var	fiveAlso	=	five;	//	==	5

		var	sevenAlso	=	seven;	//	error

}

function	scope2()	{

		var	seven	=	7;

		var	fiveAlso	=	five;	//	==	5

		var	threeAlso	=	three;	//	error

}

In	ES5	functions	were	essentially	containers	that	could	be	"seen"	out	of,	but	not	into.

In	ES6		var		still	works	that	way,	using	functions	as	containers,	but	there	are	two	new	ways
to	declare	variables:		const		and		let	.

	const		and		let		use		{		and		}		blocks	as	containers,	hence	"block	scope".	Block	scoping
is	most	useful	during	loops.	Consider	the	following:

var	i;

for	(i	=	0;	i	<	10;	i	+=	1)	{

		var	j	=	i;

		let	k	=	i;

}

console.log(j);	//	9

console.log(k);	//	undefined

Despite	the	introduction	of	block	scoping,	functions	are	still	the	preferred	mechanism	for
dealing	with	most	loops.

	let		works	like		var		in	the	sense	that	its	data	is	read/write.		let		is	also	useful	when	used
in	a	for	loop.	For	example,	without	let,	the	following	example	would	output		5,5,5,5,5	:

Constants	and	Block	Scoped	Variables

31

for(var	x=0;	x<5;	x++)	{

		setTimeout(()=>console.log(x),	0)

}

However,	when	using		let		instead	of		var	,	the	value	would	be	scoped	in	a	way	that	people
would	expect.

for(let	x=0;	x<5;	x++)	{

		setTimeout(()=>console.log(x),	0)

}

Alternatively,		const		is	read-only.	Once		const		has	been	assigned,	the	identifier	cannot	be
reassigned.

For	example:

const	myName	=	'pat';

let	yourName	=	'jo';

yourName	=	'sam';	//	assigns

myName	=	'jan';			//	error

The	read-only	nature	can	be	demonstrated	with	any	object:

const	literal	=	{};

literal.attribute	=	'test';	//	fine

literal	=	[];	//	error;

However	there	are	two	cases	where	const	does	not	work	as	you	think	it	should.

1.	 A	const	object	literal.
2.	 A	const	reference	to	an	object.

Const	Object	Literal

const	person	=	{

		name:	'Tammy'

};

person.name	=	'Pushpa';	//	OK,	name	property	changed.

person	=	null;										//	"TypeError:	Assignment	to	constant	variable.

Constants	and	Block	Scoped	Variables

32

The	example	above	demonstrates	that	we	are	able	to	change	the	name	property	of	object
person,	but	we	are	unable	to	reset	the	reference	person	since	it	has	been	marked	as
	const	.

Const	Reference	To	An	Object
Something	similar	to	the	above	code	is	using	a		const		reference,	below	we've	switch	to
using	let	for	the	literal	object.

let	person	=	{

		name:	'Tammy'

};

const	p	=	person;

p.name	=	'Pushpa';	//	OK,	name	property	changed.

p	=	null;										//	"TypeError:	Assignment	to	constant	variable.

Take	away,	marking	an	object	reference	const	does	not	make	properties	inside	the	object
const.

Ref:.

Constants	and	Block	Scoped	Variables

33

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const

Spread	Syntax	(Spread	Element)	and	Rest
parameters
A	Spread	syntax	allows	in-place	expansion	of	an	expression	for	the	following	cases:

1.	 Array
2.	 Function	call
3.	 Multiple	variable	destructuring

Rest	parameters	works	in	the	opposite	direction	of	the	spread	syntax,	it	collects	an	indefinite
number	of	comma	separated	expressions	into	an	array.

Spread	Syntax
Spread	example:

const	add	=	(a,	b)	=>	a	+	b;

let	args	=	[3,	5];

add(...args);	//	same	as	`add(args[0],	args[1])`,	or	`add.apply(null,	args)`

Functions	aren't	the	only	place	in	JavaScript	that	makes	use	of	comma	separated	lists	-
arrays	can	now	be	concatenated	with	ease:

let	cde	=	['c',	'd',	'e'];

let	scale	=	['a',	'b',	...cde,	'f',	'g'];		//	['a',	'b',	'c',	'd',	'e',	'f',	'g']

Similarly,	object	literals	can	do	the	same	thing:

let	mapABC		=	{	a:	5,	b:	6,	c:	3};

let	mapABCD	=	{	...mapABC,	d:	7};		//	{	a:	5,	b:	6,	c:	3,	d:	7	}

Rest	parameter
Rest	parameters	share	the	ellipsis	like	syntax	of	spread	syntax	but	are	used	for	a	different
purpose.	Rest	parameters	are	used	to	access	indefinite	number	of	arguments	passed	to	a
function.	For	example:

...spread	and	...rest

34

function	addSimple(a,	b)	{

		return	a	+	b;

}

function	add(...numbers)	{

		return	numbers[0]	+	numbers[1];

}

addSimple(3,	2);		//	5

add(3,	2);								//	5

//	or	in	es6	style:

const	addEs6	=	(...numbers)	=>	numbers.reduce((p,	c)	=>	p	+	c,	0);

addEs6(1,	2,	3);		//	6

Technically	JavaScript	already	had	an		arguments		variable	set	on	each	function	(except	for
arrow	functions),	however		arguments		has	a	lot	of	issues,	one	of	which	is	the	fact	that	it	is
not	technically	an	array.

Rest	parameters	are	in	fact	arrays	which	provides	access	to	methods	like		map,	filter,
reduce	and	more	.	The	other	important	difference	is	that	rest	parameters	only	include
arguments	not	specifically	named	in	a	function	like	so:

function	print(a,	b,	c,	...more)	{

		console.log(more[0]);

		console.log(arguments[0]);

}

print(1,	2,	3,	4,	5);

//	4

//	1

Note:	Commonly	spread	syntax	and	rest	parameters	are	referenced	as	Spread	and	Rest
operators	but	they	aren't	operators	according	to	ECMAScript	specifications.	Few	references
MDN-Spread	Syntax,	MDN-Rest	Parameters,	ECMAScript	Spec	-	Spread	Syntax,
ECMAScript	Spec	-	Rest	Parameters

...spread	and	...rest

35

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
http://www.ecma-international.org/ecma-262/6.0/#sec-array-initializer
http://www.ecma-international.org/ecma-262/6.0/#sec-function-definitions

Destructuring
Destructuring	is	a	way	to	quickly	extract	data	out	of	an		{}		or		[]		without	having	to	write
much	code.

To	borrow	from	the	MDN,	destructuring	can	be	used	to	turn	the	following:

let	foo	=	['one',	'two',	'three'];

let	one			=	foo[0];

let	two			=	foo[1];

let	three	=	foo[2];

into

let	foo	=	['one',	'two',	'three'];

let	[one,	two,	three]	=	foo;

console.log(one);	//	'one'

This	is	pretty	interesting,	but	at	first	it	might	be	hard	to	see	the	use	case.	ES6	also	supports
object	destructuring,	which	might	make	uses	more	obvious:

let	myModule	=	{

		drawSquare:	function	drawSquare(length)	{	/*	implementation	*/	},

		drawCircle:	function	drawCircle(radius)	{	/*	implementation	*/	},

		drawText:	function	drawText(text)	{	/*	implementation	*/	},

};

let	{drawSquare,	drawText}	=	myModule;

drawSquare(5);

drawText('hello');

Destructuring	can	also	be	used	for	passing	objects	into	a	function,	allowing	you	to	pull
specific	properties	out	of	an	object	in	a	concise	manner.	It	is	also	possible	to	assign	default
values	to	destructured	arguments,	which	can	be	a	useful	pattern	if	passing	in	a	configuration
object.

Destructuring

36

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

let	jane	=	{	firstName:	'Jane',	lastName:	'Doe'};

let	john	=	{	firstName:	'John',	lastName:	'Doe',	middleName:	'Smith'	}

function	sayName({firstName,	lastName,	middleName	=	'N/A'})	{

		console.log(`Hello	${firstName}	${middleName}	${lastName}`)		

}

sayName(jane)	//	->	Hello	Jane	N/A	Doe

sayName(john)	//	->	Helo	John	Smith	Doe

There	are	many	more	sophisticated	things	that	can	be	done	with	destructuring,	and	the	MDN
has	some	great	examples,	including	nested	object	destructuring	and	dynamic	destructuring
with		for	...	in		operators".

Destructuring

37

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

ES6	Modules
ES6	introduced	module	support.	A	module	in	ES6	is	single	file	that	allows	code	and	data	to
be	isolated,	it	helps	in	organizing	and	grouping	code	logically.	In	other	languages	it's	called	a
package	or	library.

All	code	and	data	inside	the	module	has	file	scope,	what	this	means	is	they	are	not
accessible	from	code	outside	the	module.	To	share	code	or	data	outside	a	module,	it	needs
to	be	exported	using	the	export	keyword.

//	File:	circle.js

export	const	pi	=	3.141592;

export	const	circumference	=	diameter	=>	diameter	*	pi;

The	code	above	uses	the	Arrow	function	for		circumference	.	Read	more	about	arrow
functions	here

Module	Systems
Using	a	module	on	the	backend(server	side)	is	relatively	straightforward,	you	simply	make
use	of	the	import	keyword.	However	Web	Browsers	have	no	concept	of	modules	or	import,
they	just	know	how	to	load	javascript	code.	We	need	a	way	to	bring	in	a	javascript	module	to
start	using	it	from	other	javascript	code.	This	is	where	a	module	loader	comes	in.

We	won't	get	into	the	various	module	systems	out	there,	but	it's	worth	understanding	there
are	various	module	loaders	available.	The	popular	choices	out	there	are:

RequireJS
SystemJS
Webpack

Loading	a	Module	From	a	Browser
Below	we	make	use	of	SystemJS	to	load	a	module.	The	script	first	loads	the	code	for	the
SystemJS	library,	then	the	function	call	System.import	is	use	to	import(load)	the	app
module.

Modules

38

https://angular-2-training-book.rangle.io/handout/features/arrow_functions.html

Loading	ES6	modules	is	a	little	trickier.	In	an	ES6-compliant	browser	you	use	the	System
keyword	to	load	modules	asynchronously.	To	make	our	code	work	with	current	browsers,
however,	we	will	use	the	SystemJS	library	as	a	polyfill:

		<script	src="/node_module/systemjs/dist/system.js"></script>

		<script>

				var	promise	=	System.import('app')

						.then(function()	{

								console.log('Loaded!');

						})

						.then(null,	function(error)	{

								console.error('Failed	to	load:',	error);

						});

		</script>

Modules

39

TypeScript
ES6	is	the	current	version	of	JavaScript.	TypeScript	is	a	superset	of	ES6,	which	means	all
ES6	features	are	part	of	TypeScript,	but	not	all	TypeScript	features	are	part	of	ES6.
Consequently,	TypeScript	must	be	transpiled	into	ES5	to	run	in	most	browsers.

One	of	TypeScript's	primary	features	is	the	addition	of	type	information,	hence	the	name.
This	type	information	can	help	make	JavaScript	programs	more	predictable	and	easier	to
reason	about.

Types	let	developers	write	more	explicit	"contracts".	In	other	words,	things	like	function
signatures	are	more	explicit.

Without	TS:

function	add(a,	b)	{

		return	a	+	b;

}

add(1,	3);			//	4

add(1,	'3');	//	'13'

With	TS:

function	add(a:	number,	b:	number)	{

		return	a	+	b;

}

add(1,	3);			//	4

//	compiler	error	before	JS	is	even	produced

add(1,	'3');	//	'13'

TypeScript

40

Getting	Started	With	TypeScript
Install	the	TypeScript	transpiler	using	npm:

$	npm	install	-g	typescript

Then	use		tsc		to	manually	compile	a	TypeScript	source	file	into	ES5:

$	tsc	test.ts

$	node	test.js

Note	About	ES6	Examples

Our	earlier	ES6	class	won't	compile	now.	TypeScript	is	more	demanding	than	ES6	and	it
expects	instance	properties	to	be	declared:

class	Pizza	{

		toppings:	string[];

		constructor(toppings:	string[])	{

				this.toppings	=	toppings;

		}

}

Note	that	now	that	we've	declared		toppings		to	be	an	array	of	strings,	TypeScript	will
enforce	this.	If	we	try	to	assign	a	number	to	it,	we	will	get	an	error	at	compilation	time.

If	you	want	to	have	a	property	that	can	be	set	to	a	value	of	any	type,	however,	you	can	still
do	this:	just	declare	its	type	to	be	"any":

class	Pizza	{

		toppings:	any;

		//...

}

Getting	Started	With	TypeScript

41

Working	With	 	tsc	
So	far		tsc		has	been	used	to	compile	a	single	file.	Typically	programmers	have	a	lot	more
than	one	file	to	compile.	Thankfully		tsc		can	handle	multiple	files	as	arguments.

Imagine	two	ultra	simple	files/modules:

a.ts

export	const	A	=	(a)	=>	console.log(a);

b.ts

export	const	B	=	(b)	=>	console.log(b);

Before	TypeScript@1.8.2:

$	tsc	./a.ts	./b.ts

a.ts(1,1):	error	TS1148:	Cannot	compile	modules	unless	the	'--module'	flag	is	provided

.

Hmmm.	What's	the	deal	with	this	module	flag?	TypeScript	has	a	help	menu,	let's	take	a	look:

$	tsc	--help	|	grep	module

	-m	KIND,	--module	KIND													Specify	module	code	generation:	'commonjs',	'amd',

	'system',	'umd'	or	'es2015'

	--moduleResolution																	Specifies	module	resolution	strategy:	'node'	(Node

.js)	or	'classic'	(TypeScript	pre-1.6).

(TypeScript	has	more	help	than	what	we've	shown;	we	filtered	by		grep		for	brevity.)	There
are	two	help	entries	that	reference	"module",	and		--module		is	the	one	TypeScript	was
complaining	about.	The	description	explains	that	TypeScript	supports	a	number	of	different
module	schemes.	For	the	moment		commonjs		is	desirable.	This	will	produce	modules	that
are	compatible	with	node.js's	module	system.

$	tsc	-m	commonjs	./a.ts	./b.ts

Since	TypeScript@1.8.2,		tsc		has	a	default	rule	for		--module		option:		target	===	'ES6'	?
'ES6'	:	'commonjs'		(more	details	can	be	found	here),	so	we	can	simply	run:

Working	With	tsc

42

https://www.typescriptlang.org/docs/handbook/compiler-options.html

$	tsc	./a.ts	./b.ts

	tsc		should	produce	no	output.	In	many	command	line	traditions,	no	output	is	actually	a
mark	of	success.	Listing	the	directory	contents	will	confirm	that	our	TypeScript	files	did	in
fact	compile.

$	ls

a.js				a.ts				b.js				b.ts

Excellent	-	there	are	now	two	JavaScript	modules	ready	for	consumption.

Telling	the		tsc		command	what	to	compile	becomes	tedious	and	labor	intensive	even	on
small	projects.	Fortunately	TypeScript	has	a	means	of	simplifying	this.		tsconfig.json		files
let	programmers	write	down	all	the	compiler	settings	they	want.	When		tsc		is	run,	it	looks
for		tsconfig.json		files	and	uses	their	rules	to	compile	JavaScript.

For	Angular	projects	there	are	a	number	of	specific	settings	that	need	to	be	configured	in	a
project's		tsconfig.json	

{

	"compilerOptions":	{

				"module":	"commonjs",

				"target":	"es5",

				"emitDecoratorMetadata":	true,

				"experimentalDecorators":	true,

				"noImplicitAny":	false,

				"removeComments":	false,

				"sourceMap":	true

		},

		"exclude":	[

				"node_modules",

				"dist/"

]

}

Target

The	compilation	target.	TypeScript	supports	targeting	different	platforms	depending	on	your
needs.	In	our	case,	we're	targeting	modern	browsers	which	support	ES5.

Module

Working	With	tsc

43

The	target	module	resolution	interface.	We're	integrating	TypeScript	through	webpack	which
supports	different	interfaces.	We've	decided	to	use	node's	module	resolution	interface,
	commonjs	.

Decorators

Decorator	support	in	TypeScript	hasn't	been	finalized	yet	but	since	Angular	uses	decorators
extensively,	these	need	to	be	set	to	true.	Decorators	have	not	been	introduced	yet,	and	will
be	covered	later	in	this	section.

TypeScript	with	Webpack

We	won't	be	running		tsc		manually,	however.	Instead,	webpack's		ts-loader		will	do	the
transpilation	during	the	build:

		//	webpack.config.js

		//...

		rules:	[

				{	test:	/\.ts$/,	loader:	'ts',	exclude:	/node_modules/	},

				//...

]

This	loader	calls		tsc		for	us,	and	it	will	use	our		tsconfig.json	.

Working	With	tsc

44

http://rbuckton.github.io/ReflectDecorators/typescript.html

Typings
Astute	readers	might	be	wondering	what	happens	when	TypeScript	programmers	need	to
interface	with	JavaScript	modules	that	have	no	type	information.	TypeScript	recognizes	files
labelled		*.d.ts		as	definition	files.	These	files	are	meant	to	use	TypeScript	to	describe
interfaces	presented	by	JavaScript	libraries.

There	are	communities	of	people	dedicated	to	creating	typings	for	JavaScript	projects.	There
is	also	a	utility	called		typings		(npm	install	--save-dev	typings)	that	can	be	used	to
manage	third	party	typings	from	a	variety	of	sources.	(Deprecated	in	TypeScript	2.0)

In	TypeScript	2.0,	users	can	get	type	files	directly	from		@types		through		npm		(for	example,
	npm	install	--save	@types/lodash		will	install		lodash		type	file).

Typings

45

Linting
Many	editors	support	the	concept	of	"linting"	-	a	grammar	check	for	computer	programs.
Linting	can	be	done	in	a	programmer's	editor	and/or	through	automation.

For	TypeScript	there	is	a	package	called		tslint	,	(npm	install	--save-dev	tslint)	which
can	be	plugged	into	many	editors.		tslint		can	also	be	configured	with	a		tslint.json		file.

Webpack	can	run		tslint		before	it	attempts	to	run		tsc	.	This	is	done	by	installing		tslint-
loader		(npm	install	--save-dev	tslint-loader)	which	plugs	into	webpack	like	so:

//	...

module:	{

		preLoaders:	[

				{	test:	/\.ts$/,	loader:	'tslint'	}

],

		loaders:	[

				{	test:	/\.ts$/,	loader:	'ts',	exclude:	/node_modules/	},

				//	...

]

		//	...

}

Linting

46

TypeScript	Features
Now	that	producing	JavaScript	from	TypeScript	code	has	been	de-mystified,	some	of	its
features	can	be	described	and	experimented	with.

Types
Interfaces
Shapes
Decorators

Types
Many	people	do	not	realize	it,	but	JavaScript	does	in	fact	have	types,	they're	just	"duck
typed",	which	roughly	means	that	the	programmer	does	not	have	to	think	about	them.
JavaScript's	types	also	exist	in	TypeScript:

	boolean		(true/false)
	number		integers,	floats,		Infinity		and		NaN	
	string		characters	and	strings	of	characters
	[]		Arrays	of	other	types,	like		number[]		or		boolean[]	
	{}		Object	literal
	undefined		not	set

TypeScript	also	adds

	enum		enumerations	like		{	Red,	Blue,	Green	}	
	any		use	any	type
	void		nothing

Primitive	type	example:

TypeScript	Features

47

let	isDone:	boolean	=	false;

let	height:	number	=	6;

let	name:	string	=	"bob";

let	list:	number[]	=	[1,	2,	3];

let	list:	Array<number>	=	[1,	2,	3];

enum	Color	{Red,	Green,	Blue};

let	c:	Color	=	Color.Green;

let	notSure:	any	=	4;

notSure	=	"maybe	a	string	instead";

notSure	=	false;	//	okay,	definitely	a	boolean

function	showMessage(data:	string):	void	{

		alert(data);

}

showMessage('hello');

This	illustrates	the	primitive	types	in	TypeScript,	and	ends	by	illustrating	a		showMessage	
function.	In	this	function	the	parameters	have	specific	types	that	are	checked	when		tsc		is
run.

In	many	JavaScript	functions	it's	quite	common	for	functions	to	take	optional	parameters.
TypeScript	provides	support	for	this,	like	so:

function	logMessage(message:	string,	isDebug?:	boolean)	{

		if	(isDebug)	{

				console.log('Debug:	'	+	message);

		}	else	{

				console.log(message);

		}

}

logMessage('hi');									//	'hi'

logMessage('test',	true);	//	'Debug:	test'

Using	a		?		lets		tsc		know	that		isDebug		is	an	optional	parameter.		tsc		will	not	complain	if
	isDebug		is	omitted.

TypeScript	Features

48

TypeScript	Classes
TypeScript	also	treats		class	es	as	their	own	type:

class	Foo	{	foo:	number;	}

class	Bar	{	bar:	string;	}

class	Baz	{	

		constructor(foo:	Foo,	bar:	Bar)	{	}

}

let	baz	=	new	Baz(new	Foo(),	new	Bar());	//	valid

baz	=	new	Baz(new	Bar(),	new	Foo());					//	tsc	errors

Like	function	parameters,		class	es	sometimes	have	optional	members.	The	same		?:	
syntax	can	be	used	on	a		class		definition:

class	Person	{

		name:	string;

		nickName?:	string;

}

In	the	above	example,	an	instance	of		Person		is	guaranteed	to	have	a		name	,	and	might
optionally	have	a		nickName	

TypeScript	Classes

49

Interfaces
An	interface	is	a	TypeScript	artifact,	it	is	not	part	of	ECMAScript.	An	interface	is	a	way	to
define	a	contract	on	a	function	with	respect	to	the	arguments	and	their	type.	Along	with
functions,	an	interface	can	also	be	used	with	a	Class	as	well	to	define	custom	types.

An	interface	is	an	abstract	type,	it	does	not	contain	any	code	as	a	class	does.	It	only	defines
the	'signature'	or	shape	of	an	API.	During	transpilation,	an		interface		will	not	generate	any
code,	it	is	only	used	by	Typescript	for	type	checking	during	development.

Here	is	an	example	of	an	interface	describing	a	function	API:

interface	Callback	{

		(error:	Error,	data:	any):	void;

}

function	callServer(callback:	Callback)	{

		callback(null,	'hi');

}

callServer((error,	data)	=>	console.log(data));		//	'hi'

callServer('hi');																																//	tsc	error

Sometimes	JavaScript	functions	can	accept	multiple	types	as	well	as	varying	arguments,
that	is,	they	can	have	different	call	signatures.	Interfaces	can	be	used	to	specify	this.

interface	PrintOutput	{

		(message:	string):	void;				//	common	case

		(message:	string[]):	void;		//	less	common	case

}

let	printOut:	PrintOutput	=	(message)	=>	{

		if	(Array.isArray(message))	{

				console.log(message.join(',	'));

		}	else	{

				console.log(message);

		}

}

printOut('hello');							//	'hello'

printOut(['hi',	'bye']);	//	'hi,	bye'

Here	is	an	example	of	an	interface	describing	an	object	literal:

Interfaces

50

interface	Action	{

		type:	string;

}

let	a:	Action	=	{

				type:	'literal'

}

Interfaces

51

Shapes
Underneath	TypeScript	is	JavaScript,	and	underneath	JavaScript	is	typically	a	JIT	(Just-In-
Time	compiler).	Given	JavaScript's	underlying	semantics,	types	are	typically	reasoned	about
by	"shapes".	These	underlying	shapes	work	like	TypeScript's	interfaces,	and	are	in	fact	how
TypeScript	compares	custom	types	like		class	es	and		interface	s.

Consider	an	expansion	of	the	previous	example:

interface	Action	{

		type:	string;

}

let	a:	Action	=	{

				type:	'literal'	

}

class	NotAnAction	{

		type:	string;

		constructor()	{

				this.type	=	'Constructor	function	(class)';

		}

}

a	=	new	NotAnAction();	//	valid	TypeScript!

Despite	the	fact	that		Action		and		NotAnAction		have	different	identifiers,		tsc		lets	us	assign
an	instance	of		NotAnAction		to		a		which	has	a	type	of		Action	.	This	is	because	TypeScript
only	really	cares	that	objects	have	the	same	shape.	In	other	words	if	two	objects	have	the
same	attributes,	with	the	same	typings,	those	two	objects	are	considered	to	be	of	the	same
type.

Shapes

52

Type	Inference
One	common	misconception	about	TypeScript's	types	is	that	code	needs	to	explicitly
describe	types	at	every	possible	opportunity.	Fortunately	this	is	not	the	case.	TypeScript	has
a	rich	type	inference	system	that	will	"fill	in	the	blanks"	for	the	programmer.	Consider	the
following:

type-inference-finds-error.ts

let	numbers	=	[2,	3,	5,	7,	11];

numbers	=	['this	will	generate	a	type	error'];

tsc	./type-inference-finds-error.ts	

type-inference-finds-error.ts(2,1):	error	TS2322:	Type	'string[]'	is	not	assignable	to	

type	'number[]'.

		Type	'string'	is	not	assignable	to	type	'number'.

The	code	contains	no	extra	type	information.	In	fact,	it's	valid	ES6.
If		var		had	been	used,	it	would	be	valid	ES5.	Yet	TypeScript	is	still	able	to	determine	type
information.

Type	inference	can	also	work	through	context,	which	is	handy	with	callbacks.	Consider	the
following:

type-inference-finds-error-2.ts

interface	FakeEvent	{

		type:	string;

}

interface	FakeEventHandler	{

		(e:	FakeEvent):	void;	

}

class	FakeWindow	{

		onMouseDown:	FakeEventHandler

}

const	fakeWindow	=	new	FakeWindow();

fakeWindow.onMouseDown	=	(a:	number)	=>	{

		//	this	will	fail

};

Type	Inference

53

tsc	./type-inference-finds-error-2.ts	

type-inference-finds-error-2.ts(14,1):	error	TS2322:	Type	'(a:	number)	=>	void'	is	not

	assignable	to	type	'FakeEventHandler'.

		Types	of	parameters	'a'	and	'e'	are	incompatible.

				Type	'number'	is	not	assignable	to	type	'FakeEvent'.

						Property	'type'	is	missing	in	type	'Number'.

In	this	example	the	context	is	not	obvious	since	the	interfaces	have	been	defined	explicitly.
In	a	browser	environment	with	a	real		window		object,	this	would	be	a	handy	feature,
especially	the	type	completion	of	the		Event		object.

Type	Inference

54

Type	Keyword
The		type		keyword	defines	an	alias	to	a	type.

type	str	=	string;

let	cheese:	str	=	'gorgonzola';

let	cake:	str	=	10;	//	Type	'number'	is	not	assignable	to	type	'string'

At	first	glance,	this	does	not	appear	to	be	very	useful	(even	the	error	mentions	the	original
type),	but	as	type	annotations	become	more	complex,	the	benefits	of	the		type		keyword
become	apparent.

Union	Types

Union	types	allow	type	annotations	to	specify	that	a	property	should	be	one	of	a	set	of	types
(either/or).

function	admitAge	(age:	number|string):	string	{

		return	`I	am	${age},	alright?!`;

}

admitAge(30);	//	'I	am	30,	alright?!'

admitAge('Forty');	//	'I	am	Forty,	alright?!'

The		type		keyword	simplifies	annotating	and	reusing	union	types.

type	Age	=	number	|	string;

function	admitAge	(age:	Age):	string	{

		return	`I	am	${age},	alright?!`;

}

let	myAge:	Age	=	50;

let	yourAge:	Age	=	'One	Hundred';

admitAge(yourAge);	//	'I	am	One	Hundred,	alright?!'

A	union	type	of	string	literal	types	is	a	very	useful	pattern,	creating	what	is	basically	an	enum
with	string	values.

Type	Keyword

55

type	PartyZone	=	"pizza	hut"	|	"waterpark"	|	"bowling	alley"	|	"abandoned	warehouse";

function	goToParty	(place:	PartyZone):	string	{

		return	`lets	go	to	the	${place}`;

}

goToParty("pizza	hut");

goToParty("chuck	e.	cheese");	//	Argument	of	type	`"chuck	e.	cheese"'	is	not	assignabl

e	to	parameter	of	type	'PartyZone'

Intersection	Types

Intersection	types	are	the	combination	of	two	or	more	types.	Useful	for	objects	and	params
that	need	to	implement	more	than	one	interface.

interface	Kicker	{

		kick(speed:	number):	number;

}

interface	Puncher	{

		punch(power:	number):	number;

}

//	assign	intersection	type	definition	to	alias	KickPuncher

type	KickPuncher	=	Kicker	&	Puncher;

function	attack	(warrior:	KickPuncher)	{

		warrior.kick(102);

		warrior.punch(412);

		warrior.judoChop();	//	Property	'judoChop'	does	not	exist	on	type	'KickPuncher'

}

Function	Type	Definitions

Function	type	annotations	can	get	much	more	specific	than	typescripts	built-in		Function	
type.	Function	type	definitions	allow	you	to	attach	a	function	signature	to	it's	own	type.

type	MaybeError	=	Error	|	null;

type	Callback	=	(err:	MaybeError,	response:	Object)	=>	void;

function	sendRequest	(cb:	Callback):	void	{

		if	(cb)	{

				cb(null,	{});

		}

}

The	syntax	is	similar	to	ES6	fat-arrow	functions.		([params])	=>	[return	type]	.

Type	Keyword

56

To	illustrate	the	how	much	the		type		keyword	improved	the	readability	of	the	previous
snippet,	here	is	the	function	type	defined	inline.

function	sendRequest	(cb:	(err:	Error|null,	response:	Object)	=>	void):	void	{

		if	(cb)	{

				cb(null,	{});

		}

}

Type	Keyword

57

Decorators
Decorators	are	proposed	for	a	future	version	of	JavaScript,	but	the	Angular	team	really
wanted	to	use	them,	and	they	have	been	included	in	TypeScript.

Decorators	are	functions	that	are	invoked	with	a	prefixed		@		symbol,	and	immediately
followed	by	a		class	,	parameter,	method	or	property.	The	decorator	function	is	supplied
information	about	the		class	,	parameter	or	method,	and	the	decorator	function	returns
something	in	its	place,	or	manipulates	its	target	in	some	way.	Typically	the	"something"	a
decorator	returns	is	the	same	thing	that	was	passed	in,	but	it	has	been	augmented	in	some
way.

Decorators	are	quite	new	in	TypeScript,	and	most	use	cases	demonstrate	the	use	of	existing
decorators.	However,	decorators	are	just	functions,	and	are	easier	to	reason	about	after
walking	through	a	few	examples.

Decorators	are	functions,	and	there	are	four	things	(class	,	parameter,	method	and
property)	that	can	be	decorated;	consequently	there	are	four	different	function	signatures	for
decorators:

class:		declare	type	ClassDecorator	=	<TFunction	extends	Function>(target:	TFunction)
=>	TFunction	|	void;	

property:		declare	type	PropertyDecorator	=	(target:	Object,	propertyKey:	string	|
symbol)	=>	void;	

method:		declare	type	MethodDecorator	=	<T>(target:	Object,	propertyKey:	string	|
symbol,	descriptor:	TypedPropertyDescriptor<T>)	=>	TypedPropertyDescriptor<T>	|	void;	

parameter:		declare	type	ParameterDecorator	=	(target:	Object,	propertyKey:	string	|
symbol,	parameterIndex:	number)	=>	void;	

Readers	who	have	played	with	Angular	will	notice	that	these	signatures	do	not	look	like	the
signatures	used	by	Angular	specific	decorators	like		@Component()	.

Notice	the		()		on		@Component	.	This	means	that	the		@Component		is	called	once	JavaScript
encounters		@Component()	.	In	turn,	this	means	that	there	must	be	a		Component		function
somewhere	that	returns	a	function	matching	one	of	the	decorator	signatures	outlined	above.
This	is	an	example	of	the	decorator	factory	pattern.

If	decorators	still	look	confusing,	perhaps	some	examples	will	clear	things	up.

Decorators

58

Property	Decorators
Property	decorators	work	with	properties	of	classes.

function	Override(label:	string)	{

		return	function	(target:	any,	key:	string)	{

				Object.defineProperty(target,	key,	{	

						configurable:	false,

						get:	()	=>	label

				});

		}

}

class	Test	{

		@Override('test')						//	invokes	Override,	which	returns	the	decorator

		name:	string	=	'pat';

}

let	t	=	new	Test();

console.log(t.name);		//	'test'

The	above	example	must	be	compiled	with	both	the		--experimentalDecorators		and		--
emitDecoratorMetadata		flags.

In	this	case	the	decorated	property	is	replaced	by	the		label		passed	to	the	decorator.	It's
important	to	note	that	property	values	cannot	be	directly	manipulated	by	the	decorator;
instead	an	accessor	is	used.

Here's	a	classic	property	example	that	uses	a	plain	decorator

function	ReadOnly(target:	any,	key:	string)	{

		Object.defineProperty(target,	key,	{	writable:	false	});

}

class	Test	{

		@ReadOnly													//	notice	there	are	no	`()`

		name:	string;

}

const	t	=	new	Test();

t.name	=	'jan';									

console.log(t.name);	//	'undefined'

In	this	case	the	name	property	is	not		writable	,	and	remains	undefined.

Property	Decorators

59

Property	Decorators

60

Class	Decorators

function	log(prefix?:	string)	{

		return	(target)	=>	{

				//	save	a	reference	to	the	original	constructor

				var	original	=	target;

				//	a	utility	function	to	generate	instances	of	a	class

				function	construct(constructor,	args)	{

						var	c:	any	=	function	()	{

								return	constructor.apply(this,	args);

						}

						c.prototype	=	constructor.prototype;

						return	new	c();

				}

				//	the	new	constructor	behavior

				var	f:	any	=	function	(...args)	{

						console.log(prefix	+	original.name);

						return	construct(original,	args);

				}

				//	copy	prototype	so	instanceof	operator	still	works

				f.prototype	=	original.prototype;

				//	return	new	constructor	(will	override	original)

				return	f;

		};

}

@log('hello')

class	World	{

}

const	w	=	new	World();	//	outputs	"helloWorld"

In	the	example		log		is	invoked	using		@	,	and	passed	a	string	as	a	parameter,		@log()	
returns	an	anonymous	function	that	is	the	actual	decorator.

The	decorator	function	takes	a		class	,	or	constructor	function	(ES5)	as	an	argument.	The
decorator	function	then	returns	a	new	class	construction	function	that	is	used	whenever
	World		is	instantiated.

This	decorator	does	nothing	other	than	log	out	its	given	parameter,	and	its		target	's	class
name	to	the	console.

Class	Decorators

61

Class	Decorators

62

Parameter	Decorators

function	logPosition(target:	any,	propertyKey:	string,	parameterIndex:	number)	{

		console.log(parameterIndex);

}

class	Cow	{

		say(b:	string,	@logPosition	c:	boolean)	{

				console.log(b);

		}

}

new	Cow().say('hello',	false);	//	outputs	1	(newline)	hello

The	above	demonstrates	decorating	method	parameters.	Readers	familiar	with	Angular	can
now	imagine	how	Angular	implemented	their		@Inject()		system.

Parameter	Decorators

63

The	JavaScript	Toolchain
In	this	section,	we'll	describe	the	tools	that	you'll	be	using	for	the	rest	of	the	course.

Figure:	Hand	Tools	by	M338	is	licensed	under	Public	Domain
(http://commons.wikimedia.org/wiki/File:Hand_tools.jpg)

The	JavaScript	Toolchain

64

Source	Control:	Git
A	source	control,	sometimes	called	a	version	control	brings	change	management	to	saving
files	at	different	points	in	the	development	process.	A	Version	control	system	(VCS)	that
will	we	make	use	of	is	Git.

Git	is	a	decentralized	distributed	versioning	system,	it	allows	programmers	to	collaborate	on
the	same	codebase	without	stepping	on	each	other's	toes.	It	has	become	the	de-facto
source	control	system	for	open	source	development	because	of	its	decentralized	model	and
cheap	branching	features.

For	more	information	on	how	to	use	Git,	head	over	to	Pro	Git

Source	Control:	git

65

http://git-scm.com/
https://www.gitbook.com/book/gitbookio/progit/details

The	Command	Line
JavaScript	development	tools	are	very	command	line	oriented.	If	you	come	from	a	Windows
background	you	may	find	this	unfamiliar.	However	the	command	line	provides	better	support
for	automating	development	tasks,	so	it's	worth	getting	comfortable	with	it.

We	will	provide	examples	for	all	command	line	activities	required	by	this	course.

The	Command	Line

66

Command	Line	JavaScript:	NodeJS
Node.js	is	a	JavaScript	runtime	environment	that	allows	JavaScript	code	to	run	outside	of	a
browser	using	Google	V8	JavaScript	engine.	Node.js	is	used	for	writting	fast	executing	code
on	the	server	to	handle	events	and	non-blocking	I/O	efficently.

REPL	(Read-Eval-Print-Loop)	to	quickly	write	and	test	JavaScript	code.
The	V8	JavaScript	interpreter.
Modules	for	doing	OS	tasks	like	file	I/O,	HTTP,	etc.

While	Node.js	was	initially	intended	for	writing	server	code	in	JavaScript,	today	it	is	widely
used	by	JavaScript	tools,	which	makes	it	relevant	to	front-end	programmers	too.	A	lot	of	the
tools	you'll	be	using	in	this	course	leverage	Node.js.

Command	Line	JavaScript:	NodeJS

67

http://nodejs.org

Back-End	Code	Sharing	and	Distribution:
npm
	npm		is	the	"node	package	manager".	It	installs	with	NodeJS,	and	gives	you	access	to	a
wide	variety	of	3rd-party	JavaScript	modules.

It	also	performs	dependency	management	for	your	back-end	application.	You	specify
module	dependencies	in	a	file	called		package.json	;	running		npm	install		will	resolve,
download	and	install	your	back-end	application's	dependencies.

Back-End	Code	Sharing	and	Distribution:	npm

68

https://www.npmjs.com/

Module	Loading,	Bundling	and	Build
Tasks:	Webpack
Webpack	is	a	JavaScript	module	bundler.	It	takes	modules	with	their	dependencies	and
generates	static	assets	representing	those	modules.	Webpack	known	only	how	to	bundle
JavaScript.	To	bundle	other	assets	likes	CSS,	HTML,	images	or	just	about	anything	it	uses
additional	loaders.	Webpack	can	also	be	extended	via	plugins,	for	example	minification	and
mangling	can	be	done	using	the	UglifyJS	plugin	for	webpack.

Module	Loading,	Bundling	and	Build	Tasks:	Webpack

69

http://webpack.github.io/docs/what-is-webpack.html

Web	Browsers
We	use	Google's	Chrome	browser	for	this	course	because	of	its	cutting-edge	JavaScript
engine	and	excellent	debugging	tools.

However	you	are	free	to	use	other	browsers.	Not	well	known,	there	is	a	Mozilla	Firefox
Developer	Edition	available	with	support	for	great	development	and	debugging	tools.	Code
written	with	JavaScript	should	work	on	any	modern	web	browser	(Firefox,	IE9+,	Chrome,
Safari,	Opera).

Chrome

70

https://www.mozilla.org/en-US/firefox/developer/

Bootstrapping	an	Angular	Application
Bootstrapping	is	an	essential	process	in	Angular	-	it	is	where	the	application	is	loaded	when
Angular	comes	to	life.

Bootstrapping	Angular	applications	is	certainly	different	from	Angular	1.x,	but	is	still	a
straightforward	procedure.	Let's	take	a	look	at	how	this	is	done.

Bootstrapping	an	Angular	Application

71

Understanding	the	File	Structure
To	get	started	let's	create	a	bare-bones	Angular	application	with	a	single	component.	To	do
this	we	need	the	following	files:

app/app.component.ts	-	this	is	where	we	define	our	root	component
app/app.module.ts	-	the	entry	Angular	Module	to	be	bootstrapped
index.html	-	this	is	the	page	the	component	will	be	rendered	in
app/main.ts	-	is	the	glue	that	combines	the	component	and	page	together

app/app.component.ts

import	{	Component	}	from	'@angular/core'

@Component({

				selector:	'app-root',

				template:	'Bootstrapping	an	Angular	Application'

})

export	class	AppComponent	{	}

index.html

<body>

				<app-root>Loading...</app-root>

</body>

app/app.module.ts

import	{	BrowserModule	}		from	'@angular/platform-browser';

import	{	NgModule	}	'@angular/core';

import	{	AppComponent	}	from	'./app.component'

@NgModule({

		imports:	[BrowserModule],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{

}

app/main.ts

Understanding	the	File	Structure

72

import	{	platformBrowserDynamic	}	from	'@angular/platform-browser-dynamic';

import	{	AppModule	}	from	'./app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

If	you're	making	use	of	Ahead-of-Time	(AoT)	compilation,	you	would	code		main.ts		as
follows.

import	{	platformBrowser}	from	'@angular/platform-browser';

import	{	AppModuleNgFactory	}	from	'../aot/app/app.module.ngfactory';

platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);

View	Example

The	bootstrap	process	loads	main.ts	which	is	the	main	entry	point	of	the	application.	The
	AppModule		operates	as	the	root	module	of	our	application.	The	module	is	configured	to	use
	AppComponent		as	the	component	to	bootstrap,	and	will	be	rendered	on	any		app-root		HTML
element	encountered.

There	is	an		app		HTML	element	in	the	index.html	file,	and	we	use	app/main.ts	to	import	the
	AppModule		component	and	the		platformBrowserDynamic().bootstrapModule		function	and
kickstart	the	process.	As	shown	above,	you	may	optionally	use	AoT	in	which	case	you	will
be	working	with	Factories,	in	the	example,		AppModuleNgFactory		and
	bootstrapModuleFactory	.

Why	does	Angular	bootstrap	itself	in	this	way?	Well	there	is	actually	a	very	good	reason.
Since	Angular	is	not	a	web-only	based	framework,	we	can	write	components	that	will	run	in
NativeScript,	or	Cordova,	or	any	other	environment	that	can	host	Angular	applications.

The	magic	is	then	in	our	bootstrapping	process	-	we	can	import	which	platform	we	would	like
to	use,	depending	on	the	environment	we're	operating	under.	In	our	example,	since	we	were
running	our	Angular	application	in	the	browser,	we	used	the	bootstrapping	process	found	in
	@angular/platform-browser-dynamic	.

It's	also	a	good	idea	to	leave	the	bootstrapping	process	in	its	own	separate	main.ts	file.	This
makes	it	easier	to	test	(since	the	components	are	isolated	from	the		bootstrap		call),	easier
to	reuse	and	gives	better	organization	and	structure	to	our	application.

There	is	more	to	understanding	Angular	Modules	and		@NgModule		which	will	be	covered
later,	but	for	now	this	is	enough	to	get	started.

Understanding	the	File	Structure

73

https://plnkr.co/edit/X0EBXA?p=preview

Understanding	the	File	Structure

74

Bootstrapping	Providers
The	bootstrap	process	also	starts	the	dependency	injection	system	in	Angular.	We	won't	go
over	Angular's	dependency	injection	system	here	-	that	is	covered	later.	Instead	let's	take	a
look	at	an	example	of	how	to	bootstrap	your	application	with	application-wide	providers.

For	this,	we	will	register	a	service	called		GreeterService		with	the		providers		property	of	the
module	we	are	using	to	bootstrap	the	application.

app/app.module.ts

import	{	BrowserModule	}		from	'@angular/platform-browser';

import	{	NgModule	}	'@angular/core';

import	{	AppComponent	}	from	'./app.component'

import	{	GreeterService	}	from	'./greeter.service';

@NgModule({

		imports:	[BrowserModule],

		providers:	[GreeterService],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

View	Example

Bootstrapping	Providers

75

https://embed.plnkr.co/W8CkQQ62pIjHFr7BqVjX/

Components	in	Angular

Figure:	components

The	core	concept	of	any	Angular	application	is	the	component.	In	effect,	the	whole
application	can	be	modeled	as	a	tree	of	these	components.

This	is	how	the	Angular	team	defines	a	component:

A	component	controls	a	patch	of	screen	real	estate	that	we	could	call	a	view,	and
declares	reusable	UI	building	blocks	for	an	application.

Basically,	a	component	is	anything	that	is	visible	to	the	end	user	and	which	can	be	reused
many	times	within	an	application.

In	Angular	1.x	we	had	router	views	and	directives	which	worked	sort	of	like	components.	The
idea	of	directive	components	became	quite	popular.	They	were	created	by	using		directive	
with	a	controller	while	relying	on	the		controllerAs		and		bindToController		properties.	For
example:

Components	in	Angular

76

angular.module('ngcourse')

		.directive('ngcHelloComponent',	()	=>	({

						restrict:	'E',

						scope:	{	name:	'='	},

						template:	'Hello,	{{	ctrl.name	}}.',

						controller:	MyComponentCtrl,

						controllerAs:	'ctrl',

						bindToController:	true

				})

);

In	fact,	this	concept	became	so	popular	that	in	Angular	1.5	the		.component		method	was
introduced	as	syntactic	sugar.

angular.module('ngcourse')

		.component('ngcHelloComponent',	{

				bindings:	{	name:	'='	},

				template:	'Hello,	{{	$ctrl.name	}}.',

				controller:	MyComponentCtrl

		});

Components	in	Angular

77

Creating	Components
Components	in	Angular	2	build	upon	the	lessons	learned	from	Angular	1.5.	We	define	a
component's	application	logic	inside	a	class.	To	this	we	attach		@Component	,	a	TypeScript
	decorator	,	which	allows	you	to	modify	a	class	or	function	definition	and	adds	metadata	to
properties	and	function	arguments.

selector	is	the	element	property	that	we	use	to	tell	Angular	to	create	and	insert	an
instance	of	this	component.
template	is	a	form	of	HTML	that	tells	Angular	what	needs	to	be	to	rendered	in	the	DOM.

The	Component	below	will	interpolate	the	value	of		name		variable	into	the	template	between
the	double	braces		{{name}}	,	what	get	rendered	in	the	view	is		<p>Hello	World</p>	.

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'rio-hello',

		template:	'<p>Hello,	{{name}}!</p>',

})

export	class	HelloComponent	{

		name:	string;

		constructor()	{

				this.name	=	'World';

		}

}

We	need	to	import	the		Component		decarator	from		@angular/core		before	we	can	make	use
of	it.	To	use	this	component	we	simply	add		<rio-hello></rio-hello>		to	the	HTML	file	or
another	template,	and	Angular	will	insert	an	instance	of	the		HelloComponent		view	between
those	tags.

View	Example

Creating	Components

78

http://plnkr.co/edit/bXrxWVkP2MWD8yNDYqVD?p=preview

Application	Structure	with	Components
A	useful	way	of	conceptualizing	Angular	application	design	is	to	look	at	it	as	a	tree	of	nested
components,	each	having	an	isolated	scope.

For	example	consider	the	following:

<rio-todo-app>

		<rio-todo-list>

				<rio-todo-item></rio-todo-item>

				<rio-todo-item></rio-todo-item>

				<rio-todo-item></rio-todo-item>

		</rio-todo-list>

		<rio-todo-form></rio-todo-form>

</rio-todo-app>

At	the	root	we	have		rio-todo-app		which	consists	of	a		rio-todo-list		and	a		rio-todo-form	.
Within	the	list	we	have	several		rio-todo-item	s.	Each	of	these	components	is	visible	to	the
user,	who	can	interact	with	these	components	and	perform	actions.

Application	Structure	with	Components

79

Passing	Data	into	a	Component
There	are	two	ways	to	pass	data	into	a	component,	with	'property	binding'	and	'event
binding'.	In	Angular,	data	and	event	change	detection	happens	top-down	from	parent	to
children.	However	for	Angular	events	we	can	use	the	DOM	event	mental	model	where
events	flow	bottom-up	from	child	to	parent.	So,	Angular	events	can	be	treated	like	regular
HTML	DOM	based	events	when	it	comes	to	cancellable	event	propagation.

The		@Input()		decorator	defines	a	set	of	parameters	that	can	be	passed	down	from	the
component's	parent.	For	example,	we	can	modify	the		HelloComponent		component	so	that
	name		can	be	provided	by	the	parent.

import	{	Component,	Input	}	from	'@angular/core';

@Component({

		selector:	'rio-hello',

		template:	'<p>Hello,	{{name}}!</p>',

})

export	class	HelloComponent	{

		@Input()	name:	string;

}

The	point	of	making	components	is	not	only	encapsulation,	but	also	reusability.	Inputs	allow
us	to	configure	a	particular	instance	of	a	component.

We	can	now	use	our	component	like	so:

<!--	To	bind	to	a	raw	string	-->

<rio-hello	name="World"></rio-hello>

<!--	To	bind	to	a	variable	in	the	parent	scope	-->

<rio-hello	[name]="helloName"></rio-hello>

View	Example

Unlike	Angular	1.x,	this	is	one-way	binding.

Passing	Data	into	a	Component

80

http://plnkr.co/edit/LEtEN9?p=preview

Responding	to	Component	Events
An	event	handler	is	specified	inside	the	template	using	round	brackets	to	denote	event
binding.	This	event	handler	is	then	coded	in	the	class	to	process	the	event.

import	{Component}	from	'@angular/core';

@Component({

		selector:	'rio-counter',

		template:	`

				<div>

						<p>Count:	{{num}}</p>

						<button	(click)="increment()">Increment</button>

				</div>

		`

})

export	class	CounterComponent	{

		num	=	0;

		increment()	{

				this.num++;

		}

}

View	Example

To	send	data	out	of	components	via	outputs,	start	by	defining	the	outputs	attribute.	It	accepts
a	list	of	output	parameters	that	a	component	exposes	to	its	parent.

	app/counter.component.ts	

import	{	Component,	EventEmitter,	Input,	Output	}	from	'@angular/core';

@Component({

		selector:	'rio-counter',

		templateUrl:	'app/counter.component.html'

})

export	class	CounterComponent	{

		@Input()		count	=	0;

		@Output()	result	=	new	EventEmitter<number>();

		increment()	{

				this.count++;

				this.result.emit(this.count);

		}

}

Responding	to	Component	Events

81

http://plnkr.co/edit/l4FweMxodN8I26OeqhGH?p=preview

	app/counter.component.html	

<div>

		<p>Count:	{{	count	}}</p>

		<button	(click)="increment()">Increment</button>

</div>

	app/app.component.ts	

import	{	Component,	OnChange	}	from	'@angular/core';

@Component({

		selector:	'rio-app',

		templateUrl:	'app/app.component.html'

})

export	class	AppComponent	implements	OnChange	{

		num	=	0;

		parentCount	=	0;

		ngOnChange(val:	number)	{

				this.parentCount	=	val;

		}

}

	app/app.component.html	

<div>

		Parent	Num:	{{	num	}}

		Parent	Count:	{{	parentCount	}}

		<rio-counter	[count]="num"	(result)="ngOnChange($event)">

		</rio-counter>

</div>

View	Example

Together	a	set	of	input	+	output	bindings	define	the	public	API	of	your	component.	In	our
templates	we	use	the	[squareBrackets]	to	pass	inputs	and	the	(parenthesis)	to	handle
outputs.

Responding	to	Component	Events

82

http://plnkr.co/edit/5RYLZ0?p=preview

Using	Two-Way	Data	Binding
Two-way	data	binding	combines	the	input	and	output	binding	into	a	single	notation	using	the
	ngModel		directive.

<input	[(ngModel)]="name"	>

What	this	is	doing	behind	the	scenes	is	equivalent	to:

<input	[ngModel]="name"	(ngModelChange)="name=$event">

To	create	your	own	component	that	supports	two-way	binding,	you	must	define	an		@Output	
property	to	match	an		@Input	,	but	suffix	it	with	the		Change	.	The	code	example	below,	inside
class	CounterComponent	shows	how	to	make	property	count	support	two-way	binding.

	app/counter.component.ts	

import	{	Component,	Input,	Output,	EventEmitter	}	from	'@angular/core';

@Component({

		selector:	'rio-counter',

		templateUrl:	'app/counter.component.html'

})

export	class	CounterComponent	{

		@Input()	count	=	0;

		@Output()	countChange	=	EventEmitter<number>();

		increment()	{

				this.count++;

				this.countChange.emit(this.count);

		}

}

	app/counter.component.html	

<div>

		<p>

				<ng-content></ng-content>

				Count:	{{	count	}}	-

				<button	(click)="increment()">Increment</button>

		</p>

</div>

Using	Two-Way	Data	Binding

83

View	Example

Using	Two-Way	Data	Binding

84

http://plnkr.co/edit/nkww1Ov2AWZRMHFyjhjl?p=preview

Access	Child	Components	From	the
Template
In	our	templates,	we	may	find	ourselves	needing	to	access	values	provided	by	the	child
components	which	we	use	to	build	our	own	component.

The	most	straightforward	examples	of	this	may	be	seen	dealing	with	forms	or	inputs:

app/app.component.html

<section	>

		<form	#myForm="ngForm"	(ngSubmit)="onSubmit(myForm)">

				<label	for="name">Name</label>

				<input	type="text"	name="name"	id="name"	ngModel>

				<button	type="submit">Submit</button>

		</form>

		Form	Value:	{{formValue}}

</section>

app/app.component.ts

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'rio-app',

		templateUrl:	'app/app.component.html'

})

export	class	AppComponent	{

		formValue	=	JSON.stringify({});

		onSubmit	(form:	NgForm)	{

				this.formValue	=	JSON.stringify(form.value);

		}

}

View	Example

This	isn't	a	magic	feature	which	only	forms	or	inputs	have,	but	rather	a	way	of	referencing
the	instance	of	a	child	component	in	your	template.	With	that	reference,	you	can	then	access
public	properties	and	methods	on	that	component.

app/app.component.html

Accessing	Child	Components	from	Template

85

https://plnkr.co/edit/hfv5RC?p=preview

<rio-profile	#profile></rio-profile>

My	name	is	{{	profile.name	}}

app/profile.component.ts

@Component({

		selector:	'rio-profile',

		templateUrl:	'app/profile.component.html'

})

export	class	ProfileComponent	{

		name	=	'John	Doe';

}

View	Example

There	are	other	means	of	accessing	and	interfacing	with	child	components,	but	if	you	simply
need	to	reference	properties	or	methods	of	a	child,	this	can	be	a	simple	and	straightforward
method	of	doing	so.

Accessing	Child	Components	from	Template

86

https://plnkr.co/edit/wEFOta?p=preview

Projection
Projection	is	a	very	important	concept	in	Angular.	It	enables	developers	to	build	reusable
components	and	make	applications	more	scalable	and	flexible.	To	illustrate	that,	suppose	we
have	a		ChildComponent		like:

@Component({

				selector:	'rio-child',

				template:	`

						<div>

								<h4>Child	Component</h4>

								{{	childContent	}}

						</div>

				`

})

export	class	ChildComponent	{

		childContent	=	"Default	content";

}

What	should	we	do	if	we	want	to	replace		{{	childContent	}}		to	any	HTML	that	provided	to
	ChildComponent	?	One	tempting	idea	is	to	define	an		@Input		containing	the	text,	but	what	if
you	wanted	to	provide	styled	HTML,	or	other	components?	Trying	to	handle	this	with	an
	@Input		can	get	messy	quickly,	and	this	is	where	content	projection	comes	in.	Components
by	default	support	projection,	and	you	can	use	the		ngContent		directive	to	place	the
projected	content	in	your	template.

So,	change		ChildComponent		to	use	projection:

	app/child/child.component.ts	

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'rio-child',

		template:	`

				<div	style="border:	1px	solid	blue;	padding:	1rem;">

						<h4>Child	Component</h4>

						<ng-content></ng-content>

				</div>

		`

})

export	class	ChildComponent	{

}

Then,	when	we	use		ChildComponent		in	the	template:

Projection

87

	app/app.component.html	

...

		<rio-child>

				<p>My	<i>projected</i>	content.</p>

		</rio-child>

...

This	is	telling	Angular,	that	for	any	markup	that	appears	between	the	opening	and	closing
tag	of		<rio-child>	,	to	place	inside	of		<ng-content></ng-content>	.

When	doing	this,	we	can	have	other	components,	markup,	etc	projected	here	and	the
	ChildComponent		does	not	need	to	know	about	or	care	what	is	being	provided.

View	Example

But	what	if	we	have	multiple		<ng-content></ng-content>		and	want	to	specify	the	position	of
the	projected	content	to	certain		ng-content	?	For	example,	for	the	previous
	ChildComponent	,	if	we	want	to	format	the	projected	content	into	an	extra		header		and
	footer		section:

	app/child-select.component.html	

<div	style="...">

		<h4>Child	Component	with	Select</h4>

		<div	style="...">

				<ng-content	select="header"></ng-content>

		</div>

		<div	style="...">

				<ng-content	select="section"></ng-content>

		</div>

		<div	style="...">

				<ng-content	select=".class-select"></ng-content>

		</div>

		<div	style="...">

				<ng-content	select="footer"></ng-content>

		</div>

</div>

Then	in	the	template,	we	can	use	directives,	say,		<header>		to	specify	the	position	of
projected	content	to	the		ng-content		with		select="header"	:

	app/app.component.html	

Projection

88

http://plnkr.co/edit/QAQ6BFuwuzEDVvqAmN9L?p=preview

...

<rio-child-select>

		<section>Section	Content</section>

		<div	class="class-select">

				div	with	.class-select

		</div>

		<footer>Footer	Content</footer>

		<header>Header	Content</header>

</rio-child-select>

...

Besides	using	directives,	developers	can	also	select	a		ng-content		through	css	class:

<ng-content	select=".class-select"></ng-content>

	app/app.component.html	

<div	class="class-select">

		div	with	.class-select

</div>

View	Example

Projection

89

http://plnkr.co/edit/rH2vGgFluLXHCsgfkNjF?p=preview

Structuring	Applications	with	Components
As	the	complexity	and	size	of	our	application	grows,	we	want	to	divide	responsibilities
among	our	components	further.

Smart	/	Container	components	are	application-specific,	higher-level,	container
components,	with	access	to	the	application's	domain	model.

Dumb	/	Presentational	components	are	components	responsible	for	UI	rendering	and/or
behavior	of	specific	entities	passed	in	via	components	API	(i.e	component	properties
and	events).	Those	components	are	more	in-line	with	the	upcoming	Web	Component
standards.

Structuring	Applications	with	Components

90

Using	Other	Components
Components	depend	on	other	components,	directives	and	pipes.	For	example,
	TodoListComponent		relies	on		TodoItemComponent	.	To	let	a	component	know	about	these
dependencies	we	group	them	into	a	module.

import	{NgModule}	from	'@angular/core';

import	{TodoListComponent}	from	'./components/todo-list.component';

import	{TodoItemComponent}	from	'./components/todo-item.component';

import	{TodoInputComponent}	from	'./components/todo-input.component';

@NgModule({

		imports:	[...],

		declarations:	[

				TodoListComponent,

				TodoItemComponent,

				TodoInputComponent

],

		bootstrap:	[...]

})

export	class	ToDoAppModule	{

}

The	property		declarations		expects	an	array	of	components,	directives	and	pipes	that	are
part	of	the	module.

Please	see	the	Modules	section	for	more	info	about		NgModule	.

Using	Other	Components

91

Directives
A	Directive	modifies	the	DOM	to	change	apperance,	behavior	or	layout	of	DOM	elements.
Directives	are	one	of	the	core	building	blocks	Angular	uses	to	build	applications.	In	fact,
Angular	components	are	in	large	part	directives	with	templates.

From	an	Angular	1.x	perspective,	Angular	2	components	have	assumed	a	lot	of	the	roles
directives	used	to.	The	majority	of	issues	that	involve	templates	and	dependency	injection
rules	will	be	done	through	components,	and	issues	that	involve	modifying	generic	behaviour
is	done	through	directives.

There	are	three	main	types	of	directives	in	Angular:

Component	-	directive	with	a	template.
Attribute	directives	-	directives	that	change	the	behavior	of	a	component	or	element	but
don't	affect	the	template
Structural	directives	-	directives	that	change	the	behavior	of	a	component	or	element	by
affecting	how	the	template	is	rendered

Directives

92

Attribute	Directives
Attribute	directives	are	a	way	of	changing	the	appearance	or	behavior	of	a	component	or	a
native	DOM	element.	Ideally,	a	directive	should	work	in	a	way	that	is	component	agnostic
and	not	bound	to	implementation	details.

For	example,	Angular	has	built-in	attribute	directives	such	as		ngClass		and		ngStyle		that
work	on	any	component	or	element.

Attribute	Directives

93

NgStyle	Directive
Angular	provides	a	built-in	directive,		ngStyle	,	to	modify	a	component	or	element's		style	
attribute.	Here's	an	example:

@Component({

		selector:	'app-style-example',

		template:	`

				<p	style="padding:	1rem"

						[ngStyle]="{

								'color':	'red',

								'font-weight':	'bold',

								'borderBottom':	borderStyle

						}">

						<ng-content></ng-content>

				</p>

		`

})

export	class	StyleExampleComponent	{

		borderStyle	=	'1px	solid	black';

}

View	Example

Notice	that	binding	a	directive	works	the	exact	same	way	as	component	attribute	bindings.
Here,	we're	binding	an	expression,	an	object	literal,	to	the		ngStyle		directive	so	the	directive
name	must	be	enclosed	in	square	brackets.		ngStyle		accepts	an	object	whose	properties
and	values	define	that	element's	style.	In	this	case,	we	can	see	that	both	kebab	case	and
lower	camel	case	can	be	used	when	specifying	a	style	property.	Also	notice	that	both	the
html		style		attribute	and	Angular		ngStyle		directive	are	combined	when	styling	the
element.

We	can	remove	the	style	properties	out	of	the	template	into	the	component	as	a	property
object,	which	then	gets	assigned	to		NgStyle		using	property	binding.	This	allows	dynamic
changes	to	the	values	as	well	as	provides	the	flexibility	to	add	and	remove	style	properties.

NgStyle	Directive

94

https://plnkr.co/edit/akK3Gw8W6EgUQ4PRQp4h?p=preview

@Component({

		selector:	'app-style-example',

		template:	`

				<p	style="padding:	1rem"

						[ngStyle]="alertStyles">

						<ng-content></ng-content>

				</p>

		`

})

export	class	StyleExampleComponent	{

		borderStyle	=	'1px	solid	black';

		alertStyles	=	{

				'color':	'red',

				'font-weight':	'bold',

				'borderBottom':	this.borderStyle

		};

}

NgStyle	Directive

95

NgClass	Directive
The		ngClass		directive	changes	the		class		attribute	that	is	bound	to	the	component	or
element	it's	attached	to.	There	are	a	few	different	ways	of	using	the	directive.

Binding	a	string
We	can	bind	a	string	directly	to	the	attribute.	This	works	just	like	adding	an	html		class	
attribute.

@Component({

		selector:	'app-class-as-string',

		template:	`

				<p	ngClass="centered-text	underlined"	class="orange">

						<ng-content></ng-content>

				</p>

		`,

		styles:	[`

				.centered-text	{

						text-align:	center;

				}

				.underlined	{

						border-bottom:	1px	solid	#ccc;

				}

				.orange	{

						color:	orange;

				}

		`]

})

export	class	ClassAsStringComponent	{

}

View	Example

In	this	case,	we're	binding	a	string	directly	so	we	avoid	wrapping	the	directive	in	square
brackets.	Also	notice	that	the		ngClass		works	with	the		class		attribute	to	combine	the	final
classes.

Binding	an	array

NgClass	Directive

96

https://plnkr.co/edit/uUtjY1Qlkx5dOB8gsqCm?p=preview

@Component({

		selector:	'app-class-as-array',

		template:	`

				<p	[ngClass]="['warning',	'big']">

						<ng-content></ng-content>

				</p>

		`,

		styles:	[`

				.warning	{

						color:	red;

						font-weight:	bold;

				}

				.big	{

						font-size:	1.2rem;

				}

		`]

})

export	class	ClassAsArrayComponent	{

}

View	Example

Here,	since	we	are	binding	to	the		ngClass		directive	by	using	an	expression,	we	need	to
wrap	the	directive	name	in	square	brackets.	Passing	in	an	array	is	useful	when	you	want	to
have	a	function	put	together	the	list	of	applicable	class	names.

Binding	an	object
Lastly,	an	object	can	be	bound	to	the	directive.	Angular	applies	each	property	name	of	that
object	to	the	component	if	that	property	is	true.

NgClass	Directive

97

https://plnkr.co/edit/uUtjY1Qlkx5dOB8gsqCm?p=preview

@Component({

		selector:	'app-class-as-object',

		template:	`

				<p	[ngClass]="{	card:	true,	dark:	false,	flat:	flat	}">

						<ng-content></ng-content>

						

						<button	type="button"	(click)="flat=!flat">Toggle	Flat</button>

				</p>

		`,

		styles:	[`

				.card	{

						border:	1px	solid	#eee;

						padding:	1rem;

						margin:	0.4rem;

						font-family:	sans-serif;

						box-shadow:	2px	2px	2px	#888888;

				}

				.dark	{

						background-color:	#444;

						border-color:	#000;

						color:	#fff;

				}

				.flat	{

						box-shadow:	none;

				}

		`]

})

export	class	ClassAsObjectComponent	{

		flat:	boolean	=	true;

}

View	Example

Here	we	can	see	that	since	the	object's		card		and		flat		properties	are	true,	those	classes
are	applied	but	since		dark		is	false,	it's	not	applied.

NgClass	Directive

98

https://plnkr.co/edit/uUtjY1Qlkx5dOB8gsqCm?p=preview

Structural	Directives
Structural	Directives	are	a	way	of	handling	how	a	component	or	element	renders	through	the
use	of	the		template		tag.	This	allows	us	to	run	some	code	that	decides	what	the	final
rendered	output	will	be.	Angular	has	a	few	built-in	structural	directives	such	as		ngIf	,
	ngFor	,	and		ngSwitch	.

Note:	For	those	who	are	unfamiliar	with	the		template		tag,	it	is	an	HTML	element	with	a	few
special	properties.	Content	nested	in	a	template	tag	is	not	rendered	on	page	load	and	is
something	that	is	meant	to	be	loaded	through	code	at	runtime.	For	more	information	on	the
	template		tag,	visit	the	MDN	documentation.

Structural	directives	have	their	own	special	syntax	in	the	template	that	works	as	syntactic
sugar.

@Component({

		selector:	'app-directive-example',

		template:	`

				<p	*structuralDirective="expression">

						Under	a	structural	directive.

				</p>

		`

})

Instead	of	being	enclosed	by	square	brackets,	our	dummy	structural	directive	is	prefixed	with
an	asterisk.	Notice	that	the	binding	is	still	an	expression	binding	even	though	there	are	no
square	brackets.	That's	due	to	the	fact	that	it's	syntactic	sugar	that	allows	using	the	directive
in	a	more	intuitive	way	and	similar	to	how	directives	were	used	in	Angular	1.	The	component
template	above	is	equivalent	to	the	following:

@Component({

		selector:	'app-directive-example',

		template:	`

				<template	[structuralDirective]="expression">

						<p>

								Under	a	structural	directive.

						</p>

				</template>

		`

})

Here,	we	see	what	was	mentioned	earlier	when	we	said	that	structural	directives	use	the
	template		tag.	Angular	also	has	a	built-in		template		directive	that	does	the	same	thing:

Structural	Directives

99

https://developer.mozilla.org/en/docs/Web/HTML/Element/template

@Component({

		selector:	'app-directive-example',

		template:	`

				<p	template="structuralDirective	expression">

						Under	a	structural	directive.

				</p>

		`

})

Structural	Directives

100

NgIf	Directive
The		ngIf		directive	conditionally	adds	or	removes	content	from	the	DOM	based	on	whether
or	not	an	expression	is	true	or	false.

Here's	our	app	component,	where	we	bind	the		ngIf		directive	to	an	example	component.

@Component({

		selector:	'app-root',

		template:	`

				<button	type="button"	(click)="toggleExists()">Toggle	Component</button>

				<hr>

				<app-if-example	*ngIf="exists">

						Hello

				</app-if-example>

		`

})

export	class	AppComponent	{

		exists	=	true;

		toggleExists()	{

				this.exists	=	!this.exists;

		}

}

View	Example

Clicking	the	button	will	toggle	whether	or	not		IfExampleComponent		is	a	part	of	the	DOM	and
not	just	whether	it	is	visible	or	not.	This	means	that	every	time	the	button	is	clicked,
	IfExampleComponent		will	be	created	or	destroyed.	This	can	be	an	issue	with	components	that
have	expensive	create/destroy	actions.	For	example,	a	component	could	have	a	large	child
subtree	or	make	several	HTTP	calls	when	constructed.	In	these	cases	it	may	be	better	to
avoid	using		ngIf		if	possible.

NgIf	Directive

101

https://plnkr.co/edit/Kb0KW89265F0e9pYJ118?p=preview

NgFor	Directive
The		NgFor		directive	is	a	way	of	repeating	a	template	by	using	each	item	of	an	iterable	as
that	template's	context.

@Component({

		selector:	'app-root',

		template:	`

				<app-for-example	*ngFor="let	episode	of	episodes"	[episode]="episode">

						{{episode.title}}

				</app-for-example>

		`

})

export	class	AppComponent	{

		episodes	=	[

				{	title:	'Winter	Is	Coming',	director:	'Tim	Van	Patten'	},

				{	title:	'The	Kingsroad',	director:	'Tim	Van	Patten'	},

				{	title:	'Lord	Snow',	director:	'Brian	Kirk'	},

				{	title:	'Cripples,	Bastards,	and	Broken	Things',	director:	'Brian	Kirk'	},

				{	title:	'The	Wolf	and	the	Lion',	director:	'Brian	Kirk'	},

				{	title:	'A	Golden	Crown',	director:	'Daniel	Minahan'	},

				{	title:	'You	Win	or	You	Die',	director:	'Daniel	Minahan'	},

				{	title:	'The	Pointy	End',	director:	'Daniel	Minahan'	}

];

}

View	Example

The		NgFor		directive	has	a	different	syntax	from	other	directives	we've	seen.	If	you're
familiar	with	the	for...of	statement,	you'll	notice	that	they're	almost	identical.		NgFor		lets	you
specify	an	iterable	object	to	iterate	over	and	the	name	to	refer	to	each	item	by	inside	the
scope.	In	our	example,	you	can	see	that		episode		is	available	for	interpolation	as	well	as
property	binding.	The	directive	does	some	extra	parsing	so	that	when	this	is	expanded	to
template	form,	it	looks	a	bit	different:

@Component({

		selector:	'app',

		template:	`

				<template	ngFor	[ngForOf]="episodes"	let-episode>

						<app-for-example	[episode]="episode">

								{{episode.title}}

						</app-for-example>

				</template>

		`

})

NgFor	Directive

102

https://plnkr.co/edit/dXU4K13piTYotDX5Nhi6?p=preview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

View	Example

Notice	that	there	is	an	odd		let-episode		property	on	the	template	element.	The		NgFor	
directive	provides	some	variables	as	context	within	its	scope.		let-episode		is	a	context
binding	and	here	it	takes	on	the	value	of	each	item	of	the	iterable.

Local	Variables
	NgFor		also	provides	other	values	that	can	be	aliased	to	local	variables:

index	-	position	of	the	current	item	in	the	iterable	starting	at		0	
first	-		true		if	the	current	item	is	the	first	item	in	the	iterable
last	-		true		if	the	current	item	is	the	last	item	in	the	iterable
even	-		true		if	the	current	index	is	an	even	number
odd	-		true		if	the	current	index	is	an	odd	number

@Component({

		selector:	'app-root',

		template:	`

				<app-for-example

						*ngFor="let	episode	of	episodes;	let	i	=	index;	let	isOdd	=	odd"

						[episode]="episode"

						[ngClass]="{	odd:	isOdd	}">

						{{i+1}}.	{{episode.title}}

				</app-for-example>

				<hr>

				<h2>Desugared</h2>

				<template	ngFor	[ngForOf]="episodes"	let-episode	let-i="index"	let-isOdd="odd">

						<for-example	[episode]="episode"	[ngClass]="{	odd:	isOdd	}">

								{{i+1}}.	{{episode.title}}

						</for-example>

				</template>

		`

})

View	Example

trackBy

NgFor	Directive

103

https://plnkr.co/edit/dXU4K13piTYotDX5Nhi6?p=preview
https://plnkr.co/edit/58A5p8cWpVIY7Ne4O7aO?p=preview

Often		NgFor		is	used	to	iterate	through	a	list	of	objects	with	a	unique	ID	field.	In	this	case,
we	can	provide	a		trackBy		function	which	helps	Angular	keep	track	of	items	in	the	list	so
that	it	can	detect	which	items	have	been	added	or	removed	and	improve	performance.

Angular	will	try	and	track	objects	by	reference	to	determine	which	items	should	be	created
and	destroyed.	However,	if	you	replace	the	list	with	a	new	source	of	objects,	perhaps	as	a
result	of	an	API	request	-	we	can	get	some	extra	performance	by	telling	Angular	how	we
want	to	keep	track	of	things.

For	example,	if	the		Add	Episode		button	was	to	make	a	request	and	return	a	new	list	of
episodes,	we	might	not	want	to	destroy	and	re-create	every	item	in	the	list.	If	the	episodes
have	a	unique	ID,	we	could	add	a		trackBy		function:

NgFor	Directive

104

@Component({

		selector:	'app-root',

		template:	`

		<button

				(click)="addOtherEpisode()"

				[disabled]="otherEpisodes.length	===	0">

				Add	Episode

		</button>

		<app-for-example

				*ngFor="let	episode	of	episodes;

				let	i	=	index;	let	isOdd	=	odd;

				trackBy:	trackById"	[episode]="episode"

				[ngClass]="{	odd:	isOdd	}">

				{{episode.title}}

		</app-for-example>

		`

})

export	class	AppComponent	{

		otherEpisodes	=	[

				{	title:	'Two	Swords',	director:	'D.	B.	Weiss',	id:	8	},

				{	title:	'The	Lion	and	the	Rose',	director:	'Alex	Graves',	id:	9	},

				{	title:	'Breaker	of	Chains',	director:	'Michelle	MacLaren',	id:	10	},

				{	title:	'Oathkeeper',	director:	'Michelle	MacLaren',	id:	11	}]

		episodes	=	[

				{	title:	'Winter	Is	Coming',	director:	'Tim	Van	Patten',	id:	0	},

				{	title:	'The	Kingsroad',	director:	'Tim	Van	Patten',	id:	1	},

				{	title:	'Lord	Snow',	director:	'Brian	Kirk',	id:	2	},

				{	title:	'Cripples,	Bastards,	and	Broken	Things',	director:	'Brian	Kirk',	id:	3	},

				{	title:	'The	Wolf	and	the	Lion',	director:	'Brian	Kirk',	id:	4	},

				{	title:	'A	Golden	Crown',	director:	'Daniel	Minahan',	id:	5	},

				{	title:	'You	Win	or	You	Die',	director:	'Daniel	Minahan',	id:	6	}

				{	title:	'The	Pointy	End',	director:	'Daniel	Minahan',	id:	7	}

];

		addOtherEpisode()	{

				//	We	want	to	create	a	new	object	reference	for	sake	of	example

				let	episodesCopy	=	JSON.parse(JSON.stringify(this.episodes))

				this.episodes=[...episodesCopy,this.otherEpisodes.pop()];

		}

		trackById(index:	number,	episode:	any):	number	{

				return	episode.id;

		}

}

To	see	how	this	can	affect	the		ForExample		component,	let's	add	some	logging	to	it.

NgFor	Directive

105

export	class	ForExampleComponent	{

		@Input()	episode;

		ngOnInit()	{

				console.log('component	created',	this.episode)

		}

		ngOnDestroy()	{

				console.log('destroying	component',	this.episode)

		}

}

View	Example

When	we	view	the	example,	as	we	click	on		Add	Episode	,	we	can	see	console	output
indicating	that	only	one	component	was	created	-	for	the	newly	added	item	to	the	list.

However,	if	we	were	to	remove	the		trackBy		from	the		*ngFor		-	every	time	we	click	the
button,	we	would	see	the	items	in	the	component	getting	destroyed	and	recreated.

View	Example	Without	trackBy

NgFor	Directive

106

https://plnkr.co/edit/jQmozF?p=preview
https://plnkr.co/edit/hC2cIK?p=preview

NgSwitch	Directives
	ngSwitch		is	actually	comprised	of	two	directives,	an	attribute	directive	and	a	structural
directive.	It's	very	similar	to	a	switch	statement	in	JavaScript	and	other	programming
languages,	but	in	the	template.

@Component({

		selector:	'app-root',

		template:	`

				<div	class="tabs-selection">

						<app-tab	[active]="isSelected(1)"	(click)="setTab(1)">Tab	1</app-tab>

						<app-tab	[active]="isSelected(2)"	(click)="setTab(2)">Tab	2</app-tab>

						<app-tab	[active]="isSelected(3)"	(click)="setTab(3)">Tab	3</app-tab>

				</div>

				<div	[ngSwitch]="tab">

						<app-tab-content	*ngSwitchCase="1">Tab	content	1</app-tab-content>

						<app-tab-content	*ngSwitchCase="2">Tab	content	2</app-tab-content>

						<app-tab-content	*ngSwitchCase="3"><app-tab-3></app-tab-3></app-tab-content>

						<app-tab-content	*ngSwitchDefault>Select	a	tab</app-tab-content>

				</div>

		`

})

export	class	AppComponent	{

		tab:	number	=	0;

		setTab(num:	number)	{

				this.tab	=	num;

		}

		isSelected(num:	number)	{

				return	this.tab	===	num;

		}

}

View	Example

Here	we	see	the		ngSwitch		attribute	directive	being	attached	to	an	element.	This	expression
bound	to	the	directive	defines	what	will	compared	against	in	the	switch	structural	directives.
If	an	expression	bound	to		ngSwitchCase		matches	the	one	given	to		ngSwitch	,	those
components	are	created	and	the	others	destroyed.	If	none	of	the	cases	match,	then
components	that	have		ngSwitchDefault		bound	to	them	will	be	created	and	the	others
destroyed.	Note	that	multiple	components	can	be	matched	using		ngSwitchCase		and	in	those
cases	all	matching	components	will	be	created.	Since	components	are	created	or	destroyed
be	aware	of	the	costs	in	doing	so.

NgSwitch	Directives

107

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/switch
https://plnkr.co/edit/QWxD0DIZi6QiISafwfgu?p=preview

NgSwitch	Directives

108

Using	Multiple	Structural	Directives
Sometimes	we'll	want	to	combine	multiple	structural	directives	together,	like	iterating	using
	ngFor		but	wanting	to	do	an		ngIf		to	make	sure	that	the	value	matches	some	or	multiple
conditions.	Combining	structural	directives	can	lead	to	unexpected	results	however,	so
Angular	requires	that	a	template	can	only	be	bound	to	one	directive	at	a	time.	To	apply
multiple	directives	we'll	have	to	expand	the	sugared	syntax	or	nest	template	tags.

@Component({

		selector:	'app-root',

		template:	`

				<template	ngFor	[ngForOf]="[1,2,3,4,5,6]"	let-item>

						<div	*ngIf="item	>	3">

								{{item}}

						</div>

				</template>

		`

})

View	Example

The	previous	tabs	example	can	use		ngFor		and		ngSwitch		if	the	tab	title	and	content	is
abstracted	away	into	the	component	class.

Using	Multiple	Structural	Directives

109

https://plnkr.co/edit/V2nWlGOwIITPrUDksGNG?p=preview

import	{Component}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<div	class="tabs-selection">

						<tab

								*ngFor="let	tab	of	tabs;	let	i	=	index"

								[active]="isSelected(i)"

								(click)="setTab(i)">

								{{	tab.title	}}

						</tab>

				</div>

				<div	[ngSwitch]="tabNumber">

						<template	ngFor	[ngForOf]="tabs"	let-tab	let-i="index">

								<tab-content	*ngSwitchCase="i">

										{{tab.content}}

								</tab-content>

						</template>

						<tab-content	*ngSwitchDefault>Select	a	tab</tab-content>

				</div>

		`

})

export	class	AppComponent	{

		tabNumber:	number	=	-1;

		tabs	=	[

				{	title:	'Tab	1',	content:	'Tab	content	1'	},

				{	title:	'Tab	2',	content:	'Tab	content	2'	},

				{	title:	'Tab	3',	content:	'Tab	content	3'	},

];

		setTab(num:	number)	{

				this.tabNumber	=	num;

		}

		isSelected(num:	number)	{

				return	this.tabNumber	===	i;

		}

}

View	Example

Using	Multiple	Structural	Directives

110

https://plnkr.co/edit/YOT4G4buUZduwvVi8cMA?p=preview

Advanced	Components

Figure:	GB	Network	PCI	Card	by	Harke	is	licensed	under	Public	Domain
(https://commons.wikimedia.org/wiki/File:GB_Network_PCI_Card.jpg)

Now	that	we	are	familiar	with	component	basics,	we	can	look	at	some	of	the	more
interesting	things	we	can	do	with	them.

Advanced	Components

111

Component	Lifecycle
A	component	has	a	lifecycle	managed	by	Angular	itself.	Angular	manages	creation,
rendering,	data-bound	properties	etc.	It	also	offers	hooks	that	allow	us	to	respond	to	key
lifecycle	events.

Here	is	the	complete	lifecycle	hook	interface	inventory:

	ngOnChanges		-	called	when	an	input	binding	value	changes
	ngOnInit		-	after	the	first		ngOnChanges	
	ngDoCheck		-	after	every	run	of	change	detection
	ngAfterContentInit		-	after	component	content	initialized
	ngAfterContentChecked		-	after	every	check	of	component	content
	ngAfterViewInit		-	after	component's	view(s)	are	initialized
	ngAfterViewChecked		-	after	every	check	of	a	component's	view(s)
	ngOnDestroy		-	just	before	the	component	is	destroyed

	from	 Component	Lifecycle

View	Example

Component	Lifecycle

112

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
http://plnkr.co/edit/kBHV6AximaHAC26kYEOA?p=preview

Accessing	Child	Component	Classes

@ViewChild	and	@ViewChildren
The	@ViewChild	and	@ViewChildren	decorators	provide	access	to	the	class	of	child
component	from	the	containing	component.

The		@ViewChild		is	a	decorator	function	that	takes	the	name	of	a	component	class	as	its
input	and	finds	its	selector	in	the	template	of	the	containing	component	to	bind	to.
	@ViewChild		can	also	be	passed	a	template	reference	variable.

For	example,	we	bind	the	class		AlertComponent		to	its	selector		<app-alert>		and	assign	it	to
the	property		alert	.	This	allows	us	to	gain	access	to	class	methods,	like		show()	.

import	{	Component,	ViewChild	}	from	'@angular/core';

import	{	AlertComponent	}	from	'./alert.component';

@Component({

				selector:	'app-root',

				template:	`

				<app-alert>My	alert</app-alert>

						<button	(click)="showAlert()">Show	Alert</button>`

})

export	class	AppComponent	{

		@ViewChild(AlertComponent)	alert:	AlertComponent;

		showAlert()	{

				this.alert.show();

		}

}

View	Example

In	the	interest	of	separation	of	concerns,	we'd	normally	want	to	have	child	elements	take
care	of	their	own	behaviors	and	pass	in	an		@Input()	.	However,	it	might	be	a	useful
construct	in	keeping	things	generic.

When	there	are	multiple	embedded	components	in	the	template,	we	can	also	use
	@ViewChildren	.	It	collects	a	list	of	instances	of	the	Alert	component,	stored	in	a	QueryList
object	that	behaves	similar	to	an	array.

Accessing	Other	Components

113

http://plnkr.co/edit/NEeEPfkHsYBbVuuAxz5z?p=preview

import	{	Component,	QueryList,	ViewChildren	}	from	'@angular/core';

import	{	AlertComponent	}	from	'./alert.component';

@Component({

				selector:	'app-root',

				template:	`

				<app-alert	ok="Next"	(close)="showAlert(2)">

						Step	1:	Learn	angular

				</app-alert>

				<app-alert	ok="Next"	(close)="showAlert(3)">

						Step	2:	Love	angular

				</app-alert>

				<app-alert	ok="Close">

						Step	3:	Build	app

				</app-alert>

						<button	(click)="showAlert(1)">Show	steps</button>`

})

export	class	AppComponent	{

		@ViewChildren(AlertComponent)	alerts:	QueryList<AlertComponent>;

		alertsArr	=	[];

		ngAfterViewInit()	{

				this.alertsArr	=	this.alerts.toArray();

		}

		showAlert(step)	{

				this.alertsArr[step	-	1].show();	//	step	1	is	alert	index	0

		}

}

View	Example

As	shown	above,	given	a	class	type	to		@ViewChild		and		@ViewChildren		a	child	component
or	a	list	of	children	component	are	selected	respectively	using	their	selector	from	the
template.	In	addition	both		@ViewChild		and		@ViewChildren		can	be	passed	a	selector	string:

Accessing	Other	Components

114

http://plnkr.co/edit/zPtb3ZJLx7CWJa7RptxZ?p=preview

@Component({

				selector:	'app-root',

				template:	`

				<app-alert	#first	ok="Next"	(close)="showAlert(2)">

						Step	1:	Learn	angular

				</app-alert>

				<app-alert	ok="Next"	(close)="showAlert(3)">

						Step	2:	Love	angular

				</app-alert>

				<app-alert	ok="Close">

						Step	3:	Build	app

				</app-alert>

						<button	(click)="showAlert(1)">Show	steps</button>`

})

export	class	AppComponent	{

		@ViewChild('first')	alert:	AlertComponent;

		@ViewChildren(AlertComponent)	alerts:	QueryList<AlertComponent>;

		//	...

}

View	Example

Note	that	view	children	will	not	be	set	until	the		ngAfterViewInit		lifecycle	hook	is	called.

@ContentChild	and	@ContentChildren
	@ContentChild		and		@ContentChildren		work	the	same	way	as	the	equivalent		@ViewChild	
and		@ViewChildren	,	however,	the	key	difference	is	that		@ContentChild		and
	@ContentChildren		select	from	the	projected	content	within	the	component.

Again,	note	that	content	children	will	not	be	set	until	the		ngAfterContentInit		component
lifecycle	hook.

View	Example

Accessing	Other	Components

115

http://plnkr.co/edit/EnOxkmJy7Y1LIPN4wUKc?p=preview
http://plnkr.co/edit/SkX3kkAA4uprtwfjDZ6y?p=preview

View	Encapsulation
View	encapsulation	defines	whether	the	template	and	styles	defined	within	the	component
can	affect	the	whole	application	or	vice	versa.	Angular	provides	three	encapsulation
strategies:

	Emulated		(default)	-	styles	from	main	HTML	propagate	to	the	component.	Styles
defined	in	this	component's		@Component		decorator	are	scoped	to	this	component	only.
	Native		-	styles	from	main	HTML	do	not	propagate	to	the	component.	Styles	defined	in
this	component's		@Component		decorator	are	scoped	to	this	component	only.
	None		-	styles	from	the	component	propagate	back	to	the	main	HTML	and	therefore	are
visible	to	all	components	on	the	page.	Be	careful	with	apps	that	have		None		and
	Native		components	in	the	application.	All	components	with		None		encapsulation	will
have	their	styles	duplicated	in	all	components	with		Native		encapsulation.

@Component({

//	...

encapsulation:	ViewEncapsulation.None,

styles:	[

		//	...

]

})

export	class	HelloComponent	{

//	...

}

View	Example

View	Encapsulation

116

http://plnkr.co/edit/E5Hb6B5dRN0llz3JuO57?p=preview

ElementRef
Provides	access	to	the	underlying	native	element	(DOM	element).

import	{	AfterContentInit,	Component,	ElementRef	}	from	'@angular/core';

@Component({

				selector:	'app-root',

				template:	`

				<h1>My	App</h1>

				<pre>

						<code>{{	node	}}</code>

				</pre>

		`

})

export	class	AppComponent	implements	AfterContentInit	{

		node:	string;

		constructor(private	elementRef:	ElementRef)	{	}

		ngAfterContentInit()	{

				const	tmp	=	document.createElement('div');

				const	el	=	this.elementRef.nativeElement.cloneNode(true);

				tmp.appendChild(el);

				this.node	=	tmp.innerHTML;

		}

}

View	Example

ElementRef

117

https://plnkr.co/edit/TY7SrMXs8XoV6AOYwn9k?p=preview

Observables
An	exciting	new	feature	used	with	Angular	is	the		Observable	.	This	isn't	an	Angular	specific
feature,	but	rather	a	proposed	standard	for	managing	async	data	that	will	be	included	in	the
release	of	ES7.	Observables	open	up	a	continuous	channel	of	communication	in	which
multiple	values	of	data	can	be	emitted	over	time.	From	this	we	get	a	pattern	of	dealing	with
data	by	using	array-like	operations	to	parse,	modify	and	maintain	data.	Angular	uses
observables	extensively	-	you'll	see	them	in	the	HTTP	service	and	the	event	system.

Observables

118

Using	Observables
Let's	take	a	look	at	a	basic	example	of	how	to	create	and	use	an		Observable		in	an	Angular
component:

import	{Component}	from	'@angular/core';

import	{Observable}	from	'rxjs/Observable';

@Component({

				selector:	'app',

				template:	`

						Angular	Component	Using	Observables!

						<h6	style="margin-bottom:	0">VALUES:</h6>

						<div	*ngFor="let	value	of	values">-	{{	value	}}</div>

						<h6	style="margin-bottom:	0">ERRORs:</h6>

						<div>Errors:	{{anyErrors}}</div>

						<h6	style="margin-bottom:	0">FINISHED:</h6>

						<div>Finished:	{{	finished	}}</div>

						<button	style="margin-top:	2rem;"	(click)="init()">Init</button>

				`

})

export	class	MyApp	{

		private	data:	Observable<Array<number>>;

		private	values:	Array<number>	=	[];

		private	anyErrors:	boolean;

		private	finished:	boolean;

		constructor()	{

		}

		init()	{

						this.data	=	new	Observable(observer	=>	{

										setTimeout(()	=>	{

														observer.next(42);

										},	1000);

										setTimeout(()	=>	{

														observer.next(43);

										},	2000);

										setTimeout(()	=>	{

														observer.complete();

										},	3000);

						});

Using	Observables

119

						let	subscription	=	this.data.subscribe(

										value	=>	this.values.push(value),

										error	=>	this.anyErrors	=	true,

										()	=>	this.finished	=	true

);

		}

}

View	Example

First	we	import		Observable		into	our	component	from		rxjs/Observable	.	Next,	in	our
constructor	we	create	a	new		Observable	.	Note	that	this	creates	an		Observable		data	type
that	contains	data	of		number		type.	This	illustrates	the	stream	of	data	that		Observables		offer
as	well	as	giving	us	the	ability	to	maintain	integrity	of	the	type	of	data	we	are	expecting	to
receive.

Next	we	call		subscribe		on	this		Observable		which	allows	us	to	listen	in	on	any	data	that	is
coming	through.	In	subscribing	we	use	three	distinctive	callbacks:	the	first	one	is	invoked
when	receiving	new	values,	the	second	for	any	errors	that	arise	and	the	last	represents	the
function	to	be	invoked	when	the	sequence	of	incoming	data	is	complete	and	successful.

We	can	also	use		forEach		to	listen	for	incoming	data.	The	key	difference	between		forEach	
and		subscribe		is	in	how	the	error	and	completion	callbacks	are	handled.	The		forEach		call
only	accepts	the	'next	value'	callback	as	an	argument;	it	then	returns	a	promise	instead	of	a
subscription.

When	the		Observable		completes,	the	promise	resolves.	When	the		Observable		encounters
an	error,	the	promise	is	rejected.

You	can	think	of		Observable.of(1,	2,	3).forEach(doSomething)		as	being	semantically
equivalent	to:

new	Promise((resolve,	reject)	=>	{

		Observable.of(1,	2,	3).subscribe(

				doSomething,

				reject,

				resolve);

});

The		forEach		pattern	is	useful	for	a	sequence	of	events	you	only	expect	to	happen	once.

Using	Observables

120

http://plnkr.co/edit/SA25mG?p=preview

export	class	MyApp	{

		private	data:	Observable<Array<number>>;

		private	values:	Array<number>	=	[];

		private	anyErrors:	boolean;

		private	finished:	boolean;

		constructor()	{

		}

		init()	{

						this.data	=	new	Observable(observer	=>	{

										setTimeout(()	=>	{

														observer.next(42);

										},	1000);

										setTimeout(()	=>	{

														observer.next(43);

										},	2000);

										setTimeout(()	=>	{

														observer.complete();

										},	3000);

										this.status	=	"Started";

						});

						let	subscription	=	this.data.forEach(v	=>	this.values.push(v))

												.then(()	=>	this.status	=	"Ended");

		}

}

View	Example

Using	Observables

121

http://plnkr.co/edit/eJWIJd?p=preview

Error	Handling
If	something	unexpected	arises	we	can	raise	an	error	on	the		Observable		stream	and	use
the	function	reserved	for	handling	errors	in	our		subscribe		routine	to	see	what	happened.

export	class	App	{

				values:	number[]	=	[];

				anyErrors:	Error;

				private	data:	Observable<number[]>;

				constructor()	{

								this.data	=	new	Observable(observer	=>	{

														setTimeout(()	=>	{

																observer.next(10);

												},	1500);

												setTimeout(()	=>	{

																observer.error(new	Error('Something	bad	happened!'));

												},	2000);

												setTimeout(()	=>	{

																observer.next(50);

												},	2500);

								});

								let	subscription	=	this.data.subscribe(

												value	=>	this.values.push(value),

												error	=>	this.anyErrors	=	error

);

				}

}

View	Example

Here	an	error	is	raised	and	caught.	One	thing	to	note	is	that	if	we	included	a		.complete()	
after	we	raised	the	error,	this	event	will	not	actually	fire.	Therefore	you	should	remember	to
include	some	call	in	your	error	handler	that	will	turn	off	any	visual	loading	states	in	your
application.

Error	Handling

122

http://plnkr.co/edit/09rodT?p=preview

Disposing	Subscriptions	and	Releasing
Resources
In	some	scenarios	we	may	want	to	unsubscribe	from	an		Observable		stream.	Doing	this	is
pretty	straightforward	as	the		.subscribe()		call	returns	a	data	type	that	we	can	call
	.unsubscribe()		on.

export	class	MyApp	{

		private	data:	Observable<Array<string>>;

		private	value:	string;

		private	subscribed:	boolean;

		private	status:	string;

				init()	{

								this.data	=	new	Observable(observer	=>	{

												let	timeoutId	=	setTimeout(()	=>	{

																observer.next('You	will	never	see	this	message');

												},	2000);

												this.status	=	'Started';

												return	onUnsubscribe	=	()	=>	{

																this.subscribed	=	false;

																this.status	=	'Finished';

																clearTimeout(timeoutId);

												}

								});

								let	subscription	=	this.data.subscribe(

												value	=>	this.value	=	value,

												error	=>	console.log(error),

												()	=>	this.status	=	'Finished';

);

								this.subscribed	=	true;

								setTimeout(()	=>	{

										subscription.unsubscribe();

								},	1000);

				}

}

View	Example

Disposing	Subscriptions	and	Releasing	Resources

123

http://plnkr.co/edit/0MfW5d?p=preview

Calling		.unsubscribe()		will	unhook	a	member's	callbacks	listening	in	on	the		Observable	
stream.	When	creating	an		Observable		you	can	also	return	a	custom	callback,
	onUnsubscribe	,	that	will	be	invoked	when	a	member	listening	to	the	stream	has
unsubscribed.	This	is	useful	for	any	kind	of	cleanup	that	must	be	implemented.	If	we	did	not
clear	the	setTimeout	then	values	would	still	be	emitting,	but	there	would	be	no	one	listening.
To	save	resources	we	should	stop	values	from	being	emitted.	An	important	thing	to	note	is
that	when	you	call		.unsubscribe()		you	are	destroying	the	subscription	object	that	is
listening,	therefore	the	on-complete	event	attached	to	that	subscription	object	will	not	get
called.

In	most	cases	we	will	not	need	to	explicitly	call	the		unsubscribe		method	unless	we	want	to
cancel	early	or	our		Observable		has	a	longer	lifespan	than	our	subscription.	The	default
behavior	of		Observable		operators	is	to	dispose	of	the	subscription	as	soon	as		.complete()	
or		.error()		messages	are	published.	Keep	in	mind	that	RxJS	was	designed	to	be	used	in
a	"fire	and	forget"	fashion	most	of	the	time.

Disposing	Subscriptions	and	Releasing	Resources

124

Observables	vs	Promises
Both		Promises		and		Observables		provide	us	with	abstractions	that	help	us	deal	with	the
asynchronous	nature	of	our	applications.	However,	there	are	important	differences	between
the	two:

As	seen	in	the	example	above,		Observables		can	define	both	the	setup	and	teardown
aspects	of	asynchronous	behavior.

	Observables		are	cancellable.

Moreover,		Observables		can	be	retried	using	one	of	the	retry	operators	provided	by	the
API,	such	as		retry		and		retryWhen	.	On	the	other	hand,		Promises		require	the	caller	to
have	access	to	the	original	function	that	returned	the	promise	in	order	to	have	a	retry
capability.

Observables	vs	Promises

125

Using	Observables	From	Other	Sources
In	the	example	above	we	created		Observables		from	scratch	which	is	especially	useful	in
understanding	the	anatomy	of	an		Observable	.

However,	we	will	often	create		Observables		from	callbacks,	promises,	events,	collections	or
using	many	of	the	operators	available	on	the	API.

Observable	HTTP	Events
A	common	operation	in	any	web	application	is	getting	or	posting	data	to	a	server.	Angular
applications	do	this	with	the		Http		library,	which	previously	used		Promises		to	operate	in	an
asynchronous	manner.	The	updated		Http		library	now	incorporates		Observables		for
triggering	events	and	getting	new	data.	Let's	take	a	quick	look	at	this:

import	{Component}	from	'@angular/core';

import	{Http}	from	'@angular/http';

import	'rxjs/Rx';

@Component({

				selector:	'app',

				template:	`

						Angular	HTTP	requests	using	RxJs	Observables!

						

								<li	*ngFor="let	doctor	of	doctors">{{doctor.name}}

						

						`

})

export	class	MyApp	{

		private	doctors	=	[];

		constructor(http:	Http)	{

				http.get('http://jsonplaceholder.typicode.com/users/')

								.flatMap((data)	=>	data.json())

								.subscribe((data)	=>	{

										this.doctors.push(data);

								});

		}

}

View	Example

Using	Observables	From	Other	Sources

126

http://plnkr.co/edit/AikZi1?p=preview

This	basic	example	outlines	how	the		Http		library's	common	routines	like		get	,		post	,
	put		and		delete		all	return		Observables		that	allow	us	to	asynchronously	process	any
resulting	data.

Observable	Form	Events
Let's	take	a	look	at	how		Observables		are	used	in	Angular	forms.	Each	field	in	a	form	is
treated	as	an		Observable		that	we	can	subscribe	to	and	listen	for	any	changes	made	to	the
value	of	the	input	field.

import	{Component}	from	'@angular/core';

import	{FormControl,	FormGroup,	FormBuilder}	from	'@angular/forms';

import	'rxjs/add/operator/map';

@Component({

				selector:	'app',

				template:	`

						<form	[formGroup]="coolForm">

												<input	formControlName="email">

								</form>

						<div>

												You	Typed	Reversed:	{{data}}

								</div>

				`

})

export	class	MyApp	{

				email:	FormControl;

				coolForm:	FormGroup;

				data:	string;

				constructor(private	fb:	FormBuilder)	{

								this.email	=	new	FormControl();

								this.coolForm	=	fb.group({

												email:	this.email

								});

								this.email.valueChanges

								.map(n=>n.split('').reverse().join(''))

								.subscribe(value	=>	this.data	=	value);

				}

}

View	Example

Using	Observables	From	Other	Sources

127

http://plnkr.co/edit/vCdjZM?p=preview

Here	we	have	created	a	new	form	by	initializing	a	new		FormControl		field	and	grouped	it	into
a		FormGroup		tied	to	the		coolForm		HTML	form.	The		Control		field	has	a	property
	.valueChanges		that	returns	an		Observable		that	we	can	subscribe	to.	Now	whenever	a	user
types	something	into	the	field	we'll	get	it	immediately.

Using	Observables	From	Other	Sources

128

Observables	Array	Operations
In	addition	to	simply	iterating	over	an	asynchronous	collection,	we	can	perform	other
operations	such	as	filter	or	map	and	many	more	as	defined	in	the	RxJS	API.	This	is	what
bridges	an		Observable		with	the	iterable	pattern,	and	lets	us	conceptualize	them	as
collections.

Let's	expand	our	example	and	do	something	a	little	more	with	our	stream:

export	class	MyApp	{

		private	doctors	=	[];

		constructor(http:	Http)	{

				http.get('http://jsonplaceholder.typicode.com/users/')

								.flatMap((response)	=>	response.json())

								.filter((person)	=>	person.id	>	5)

								.map((person)	=>	"Dr.	"	+	person.name)

								.subscribe((data)	=>	{

										this.doctors.push(data);

								});

		}

}

View	Example

Here	are	two	really	useful	array	operations	-		map		and		filter	.	What	exactly	do	these	do?

	map		will	create	a	new	array	with	the	results	of	calling	a	provided	function	on	every
element	in	this	array.	In	this	example	we	used	it	to	create	a	new	result	set	by	iterating
through	each	item	and	appending	the	"Dr."	abbreviation	in	front	of	every	user's	name.
Now	every	object	in	our	array	has	"Dr."	prepended	to	the	value	of	its	name	property.

	filter		will	create	a	new	array	with	all	elements	that	pass	the	test	implemented	by	a
provided	function.	Here	we	have	used	it	to	create	a	new	result	set	by	excluding	any	user
whose		id		property	is	less	than	six.

Now	when	our		subscribe		callback	gets	invoked,	the	data	it	receives	will	be	a	list	of	JSON
objects	whose		id		properties	are	greater	than	or	equal	to	six	and	whose		name		properties
have	been	prepended	with		Dr.	.

Note	the	chaining	function	style,	and	the	optional	static	typing	that	comes	with	TypeScript,
that	we	used	in	this	example.	Most	importantly	functions	like		filter		return	an		Observable	,
as	in		Observables		beget	other		Observables	,	similarly	to	promises.	In	order	to	use		map		and
	filter		in	a	chaining	sequence	we	have	flattened	the	results	of	our		Observable		using

Observables	Array	Operations

129

http://plnkr.co/edit/a0JuHC?p=preview

	flatMap	.	Since		filter		accepts	an		Observable	,	and	not	an	array,	we	have	to	convert	our
array	of	JSON	objects	from		data.json()		to	an		Observable		stream.	This	is	done	with
	flatMap	.

There	are	many	other	array	operations	you	can	employ	in	your		Observables	;	look	for	them
in	the	RxJS	API.

rxmarbles.com	is	a	helpful	resource	to	understand	how	the	operations	work.

Observables	Array	Operations

130

https://github.com/Reactive-Extensions/RxJS
http://rxmarbles.com

Cold	vs	Hot	Observables
	Observables		can	be	classified	into	two	main	groups:	hot	and	cold		Observables	.	Let's	start
with	a	cold		Observable	.

const	obsv	=	new	Observable(observer	=>	{

		setTimeout(()	=>	{

				observer.next(1);

		},	1000);

		setTimeout(()	=>	{

				observer.next(2);

		},	2000);

		setTimeout(()	=>	{

				observer.next(3);

		},	3000);

		setTimeout(()	=>	{

				observer.next(4);

		},	4000);

});

//	Subscription	A

setTimeout(()	=>	{

		obsv.subscribe(value	=>	console.log(value));

},	0);

//	Subscription	B

setTimeout(()	=>	{

		obsv.subscribe(value	=>	console.log(`>>>>	${value}`));

},	2500);

View	Example

In	the	above	case	subscriber	B	subscribes	2000ms	after	subscriber	A.	Yet	subscriber	B	is
starting	to	get	values	like	subscriber	A	only	time	shifted.	This	behavior	is	referred	to	as	a
cold		Observable	.	A	useful	analogy	is	watching	a	pre-recorded	video,	such	as	on	Netflix.	You
press	Play	and	the	movie	starts	playing	from	the	beginning.	Someone	else	can	start	playing
the	same	movie	in	their	own	home	25	minutes	later.

On	the	other	hand	there	is	also	a	hot		Observable	,	which	is	more	like	a	live	performance.
You	attend	a	live	band	performance	from	the	beginning,	but	someone	else	might	be	25
minutes	late	to	the	show.	The	band	will	not	start	playing	from	the	beginning	and	the

Cold	vs	Hot	Observables

131

http://jsbin.com/felanu/46/edit?js,console

latecomer	must	start	watching	the	performance	from	where	it	is.

We	have	already	encountered	both	kind	of		Observables	.	The	example	above	is	a	cold
	Observable	,	while	the	example	that	uses		valueChanges		on	our	text	field	input	is	a	hot
	Observable	.

Converting	from	Cold	Observables	to	Hot	Observables

A	useful	method	within	RxJS	API	is	the		publish		method.	This	method	takes	in	a	cold
	Observable		as	its	source	and	returns	an	instance	of	a		ConnectableObservable	.	In	this	case
we	will	have	to	explicitly	call		connect		on	our	hot		Observable		to	start	broadcasting	values	to
its	subscribers.

const	obsv	=	new	Observable(observer	=>	{

		setTimeout(()	=>	{

				observer.next(1);

		},	1000);

		setTimeout(()	=>	{

				observer.next(2);

		},	2000);

		setTimeout(()	=>	{

				observer.next(3);

		},	3000);

		setTimeout(()	=>	{

				observer.next(4);

		},	4000);

}).publish();

obsv.connect();

//	Subscription	A

setTimeout(()	=>	{

		obsv.subscribe(value	=>	console.log(value));

},	0);

//	Subscription	B

setTimeout(()	=>	{

		obsv.subscribe(value	=>	console.log(`						${value}`));

},	2500);

View	Example

Cold	vs	Hot	Observables

132

http://jsbin.com/fewotud/3/edit?js,console

In	the	case	above,	the	live	performance	starts	at		1000ms	,	subscriber	A	arrived	to	the	concert
hall	at		0s		to	get	a	good	seat	and	our	subscriber	B	arrived	at	the	performance	at		2500ms	
and	missed	a	bunch	of	songs.

Another	useful	method	to	work	with	hot		Observables		instead	of		connect		is		refCount	.	This
is	an	auto	connect	method,	that	will	start	broadcasting	as	soon	as	there	is	more	than	one
subscriber.	Analogously,	it	will	stop	if	the	number	of	subscribers	goes	to	0;	in	other	words,	if
everyone	in	the	audience	walks	out,	the	performance	will	stop.

Cold	vs	Hot	Observables

133

Summary
	Observables		offer	a	flexible	set	of	APIs	for	composing	and	transforming	asynchronous
streams.	They	provide	a	multitude	of	functions	to	create	streams	from	many	other	types,	and
to	manipulate	and	transform	them.	We've	taken	a	look	at	how	Angular	uses		Observables		to
create	streams	from	many	other	types	to	read	user	input,	perform	asynchronous	data
fetches	and	set	up	custom	emit/subscribe	routines.

rxjs	4	to	5	migration
rxjs	Observable	API
Which	operator	do	I	use?
rxmarbles
RxJS	Operators	by	Example

Summary

134

https://github.com/ReactiveX/rxjs/blob/master/MIGRATION.md
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
https://xgrommx.github.io/rx-book/content/which_operator_do_i_use/instance_operators.html
http://rxmarbles.com
https://gist.github.com/btroncone/d6cf141d6f2c00dc6b35#file-rxjs_operators_by_example-md

Angular	Dependency	Injection
Dependency	Injection	(DI)	was	a	core	feature	in	Angular	1.x,	and	that	has	not	changed	in
Angular	2.	DI	is	a	programming	concept	that	predates	Angular.	The	purpose	of	DI	is	to
simplify	dependency	management	in	software	components.	By	reducing	the	amount	of
information	a	component	needs	to	know	about	its	dependencies,	unit	testing	can	be	made
easier	and	code	is	more	likely	to	be	flexible.

Angular	2	improves	on	Angular	1.x's	DI	model	by	unifying	Angular	1.x's	two	injection
systems.	Tooling	issues	with	respect	to	static	analysis,	minification	and	namespace
collisions	have	also	been	fixed	in	Angular	2.

Angular	Dependency	Injection

135

What	is	DI?
So	dependency	injection	makes	programmers'	lives	easier,	but	what	does	it	really	do?

Consider	the	following	code:

class	Hamburger	{

		private	bun:	Bun;

		private	patty:	Patty;

		private	toppings:	Toppings;

		constructor()	{

				this.bun	=	new	Bun('withSesameSeeds');

				this.patty	=	new	Patty('beef');

				this.toppings	=	new	Toppings(['lettuce',	'pickle',	'tomato']);

		}

}

The	above	code	is	a	contrived	class	that	represents	a	hamburger.	The	class	assumes	a
	Hamburger		consists	of	a		Bun	,		Patty		and		Toppings	.	The	class	is	also	responsible	for
making	the		Bun	,		Patty		and		Toppings	.	This	is	a	bad	thing.	What	if	a	vegetarian	burger
were	needed?	One	naive	approach	might	be:

class	VeggieHamburger	{

		private	bun:	Bun;

		private	patty:	Patty;

		private	toppings:	Toppings;

		constructor()	{

				this.bun	=	new	Bun('withSesameSeeds');

				this.patty	=	new	Patty('tofu');

				this.toppings	=	new	Toppings(['lettuce',	'pickle',	'tomato']);

		}

}

There,	problem	solved	right?	But	what	if	we	need	a	gluten	free	hamburger?	What	if	we	want
different	toppings...	maybe	something	more	generic	like:

What	is	DI?

136

class	Hamburger	{

		private	bun:	Bun;

		private	patty:	Patty;

		private	toppings:	Toppings;

		constructor(bunType:	string,	pattyType:	string,	toppings:	string[])	{

				this.bun	=	new	Bun(bunType);

				this.patty	=	new	Patty(pattyType);

				this.toppings	=	new	Toppings(toppings);

		}

}

Okay	this	is	a	little	different,	and	it's	more	flexible	in	some	ways,	but	it	is	still	quite	brittle.
What	would	happen	if	the		Patty		constructor	changed	to	allow	for	new	features?	The	whole
	Hamburger		class	would	have	to	be	updated.	In	fact,	any	time	any	of	these	constructors	used
in		Hamburger	's	constructor	are	changed,		Hamburger		would	also	have	to	be	changed.

Also,	what	happens	during	testing?	How	can		Bun	,		Patty		and		Toppings		be	effectively
mocked?

Taking	those	concerns	into	consideration,	the	class	could	be	rewritten	as:

class	Hamburger	{

		private	bun:	Bun;

		private	patty:	Patty;

		private	toppings:	Toppings;

		constructor(bun:	Bun,	patty:	Patty,	toppings:	Toppings)	{

				this.bun	=	bun;

				this.patty	=	patty;

				this.toppings	=	toppings;

		}

}

Now	when		Hamburger		is	instantiated	it	does	not	need	to	know	anything	about	its		Bun	,
	Patty	,	or		Toppings	.	The	construction	of	these	elements	has	been	moved	out	of	the	class.
This	pattern	is	so	common	that	TypeScript	allows	it	to	be	written	in	shorthand	like	so:

class	Hamburger	{

		constructor(private	bun:	Bun,	private	patty:	Patty,

				private	toppings:	Toppings)	{}

}

The		Hamburger		class	is	now	simpler	and	easier	to	test.	This	model	of	having	the
dependencies	provided	to		Hamburger		is	basic	dependency	injection.

What	is	DI?

137

However	there	is	still	a	problem.	How	can	the	instantiation	of		Bun	,		Patty		and		Toppings	
best	be	managed?

This	is	where	dependency	injection	as	a	framework	can	benefit	programmers,	and	it	is	what
Angular	provides	with	its	dependency	injection	system.

What	is	DI?

138

DI	Framework
So	there's	a	fancy	new		Hamburger		class	that	is	easy	to	test,	but	it's	currently	awkward	to
work	with.	Instantiating	a		Hamburger		requires:

const	hamburger	=	new	Hamburger(new	Bun(),	new	Patty('beef'),	new	Toppings([]));

That's	a	lot	of	work	to	create	a		Hamburger	,	and	now	all	the	different	pieces	of	code	that
make		Hamburger	s	have	to	understand	how		Bun	,		Patty		and		Toppings		get	instantiated.

One	approach	to	dealing	with	this	new	problem	might	be	to	make	a	factory	function	like	so:

function	makeHamburger()	{

				const	bun	=	new	Bun();

				const	patty	=	new	Patty('beef');

				const	toppings	=	new	Toppings(['lettuce',	'tomato',	'pickles']);

				return	new	Hamburger(bun,	patty,	toppings);

}

This	is	an	improvement,	but	when	more	complex		Hamburger	s	need	to	be	created	this	factory
will	become	confusing.	The	factory	is	also	responsible	for	knowing	how	to	create	four
different	components.	This	is	a	lot	for	one	function.

This	is	where	a	dependency	injection	framework	can	help.	DI	Frameworks	have	the	concept
of	an		Injector		object.	An	Injector	is	a	lot	like	the	factory	function	above,	but	more	general,
and	powerful.	Instead	of	one	giant	factory	function,	an	Injector	has	a	factory,	or	recipe	(pun
intended)	for	a	collection	of	objects.	With	an		Injector	,	creating	a		Hamburger		could	be	as
easy	as:

const	injector	=	new	Injector([Hamburger,	Bun,	Patty,	Toppings]);

const	burger	=	injector.get(Hamburger);

DI	Framework

139

Angular's	DI
The	last	example	introduced	a	hypothetical		Injector		object.	Angular	simplifies	DI	even
further.	With	Angular,	programmers	almost	never	have	to	get	bogged	down	with	injection
details.

Angular's	DI	system	is	(mostly)	controlled	through		@NgModule	.	Specifically	the		providers	
and		declarations		array.	(declarations		is	where	we	put	components,	pipes	and	directives;
	providers		is	where	we	put	services)

For	example:

import	{	Injectable,	NgModule	}	from	'@angular/core';

@Component({

		//	...

})

class	ChatWidget	{

		constructor(private	authService:	AuthService,	private	authWidget:	AuthWidget,

				private	chatSocket:	ChatSocket)	{}

}

@NgModule({

		declarations:	[ChatWidget]

})

export	class	AppModule	{

};

In	the	above	example	the		AppModule		is	told	about	the		ChatWidget		class.	Another	way	of
saying	this	is	that	Angular	has	been	provided	a		ChatWidget	.

That	seems	pretty	straightforward,	but	astute	readers	will	be	wondering	how	Angular	knows
how	to	build		ChatWidget	.	What	if		ChatWidget		was	a	string,	or	a	plain	function?

Angular	assumes	that	it's	being	given	a	class.

What	about		AuthService	,		AuthWidget		and		ChatSocket	?	How	is		ChatWidget		getting	those?

It's	not,	at	least	not	yet.	Angular	does	not	know	about	them	yet.	That	can	be	changed	easily
enough:

Angular's	DI

140

import	{	Injectable,	NgModule	}	from	'@angular/core';

@Component({

		//	...

})

class	ChatWidget	{

		constructor(private	authService:	AuthService,	private	authWidget:	AuthWidget,

				private	chatSocket:	ChatSocket)	{}

}

@Component({

		//	...

})

class	AuthWidget	{}

@Injectable()

class	AuthService	{}

@Injectable()

class	ChatSocket	{}

@NgModule({

		declarations[ChatWidget,	AuthWidget]

		providers:	[AuthService,	ChatSocket],

})

Okay,	this	is	starting	to	look	a	little	bit	more	complete.	Although	it's	still	unclear	how
	ChatWidget		is	being	told	about	its	dependencies.	Perhaps	that	is	related	to	those	odd
	@Injectable		statements.

Angular's	DI

141

	@Inject		and	 	@Injectable	
Statements	that	look	like		@SomeName		are	decorators.	Decorators	are	a	proposed	extension	to
JavaScript.	In	short,	decorators	let	programmers	modify	and/or	tag	methods,	classes,
properties	and	parameters.	There	is	a	lot	to	decorators.	In	this	section	the	focus	will	be	on
decorators	relevant	to	DI:		@Inject		and		@Injectable	.	For	more	information	on	Decorators
please	see	the	EcmaScript	6	and	TypeScript	Features	section.

@Inject()
	@Inject()		is	a	manual	mechanism	for	letting	Angular	know	that	a	parameter	must	be
injected.	It	can	be	used	like	so:

import	{	Component,	Inject	}	from	'@angular/core';

import	{	ChatWidget	}	from	'../components/chat-widget';

@Component({

		selector:	'app-root',

		template:	`Encryption:	{{	encryption	}}`

})

export	class	AppComponent	{

		encryption	=	this.chatWidget.chatSocket.encryption;

		constructor(@Inject(ChatWidget)	private	chatWidget)	{	}

}

In	the	above	we've	asked	for		chatWidget		to	be	the	singleton	Angular	associates	with	the
	class		symbol		ChatWidget		by	calling		@Inject(ChatWidget)	.	It's	important	to	note	that	we're
using		ChatWidget		for	its	typings	and	as	a	reference	to	its	singleton.	We	are	not	using
	ChatWidget		to	instantiate	anything,	Angular	does	that	for	us	behind	the	scenes.

When	using	TypeScript,		@Inject		is	only	needed	for	injecting	primitives.	TypeScript's	types
let	Angular	know	what	to	do	in	most	cases.	The	above	example	would	be	simplified	in
TypeScript	to:

@Inject()	and	@Injectable

142

http://blog.wolksoftware.com/decorators-reflection-javascript-typescript

import	{	Component	}	from	'@angular/core';

import	{	ChatWidget	}	from	'../components/chat-widget';

@Component({

		selector:	'app',

		template:	`Encryption:	{{	encryption	}}`

})

export	class	App	{

		encryption	=	this.chatWidget.chatSocket.encryption;

		constructor(private	chatWidget:	ChatWidget)	{	}

}

View	Example

@Injectable()
	@Injectable()		lets	Angular	know	that	a	class	can	be	used	with	the	dependency	injector.
	@Injectable()		is	not	strictly	required	if	the	class	has	other	Angular	decorators	on	it	or	does
not	have	any	dependencies.	What	is	important	is	that	any	class	that	is	going	to	be	injected
with	Angular	is	decorated.	However,	best	practice	is	to	decorate	injectables	with
	@Injectable()	,	as	it	makes	more	sense	to	the	reader.

Here's	an	example	of		ChatWidget		marked	up	with		@Injectable	:

import	{	Injectable	}	from	'@angular/core';

import	{	AuthService	}	from	'./auth-service';

import	{	AuthWidget	}	from	'./auth-widget';

import	{	ChatSocket	}	from	'./chat-socket';

@Injectable()

export	class	ChatWidget	{

		constructor(

				public	authService:	AuthService,

				public	authWidget:	AuthWidget,

				public	chatSocket:	ChatSocket)	{	}

}

In	the	above	example	Angular's	injector	determines	what	to	inject	into		ChatWidget	's
constructor	by	using	type	information.	This	is	possible	because	these	particular
dependencies	are	typed,	and	are	not	primitive	types.	In	some	cases	Angular's	DI	needs
more	information	than	just	types.

@Inject()	and	@Injectable

143

https://plnkr.co/edit/BAYoY7W6tUkbnczk3Lsg?p=preview

@Inject()	and	@Injectable

144

Injection	Beyond	Classes
So	far	the	only	types	that	injection	has	been	used	for	have	been	classes,	but	Angular	is	not
limited	to	injecting	classes.	The	concept	of		providers		was	also	briefly	touched	upon.

So	far		providers		have	been	used	with	Angular's		@NgModule		meta	in	an	array.		providers	
have	also	all	been	class	identifiers.	Angular	lets	programmers	specify	providers	with	a	more
verbose	"recipe".	This	is	done	with	by	providing	Angular	an	Object	literal	({}):

import	{	NgModule	}	from	'@angular/core';

import	{	App	}	from	'./containers/app';	//	hypothetical	app	component

import	{	ChatWidget	}	from	'./components/chat-widget';

@NgModule({

		providers:	[{	provide:	ChatWidget,	useClass:	ChatWidget	}],

})

export	class	DiExample	{};

This	example	is	yet	another	example	that		provide	s	a	class,	but	it	does	so	with	Angular's
longer	format.

This	long	format	is	really	handy.	If	the	programmer	wanted	to	switch	out		ChatWidget	
implementations,	for	example	to	allow	for	a		MockChatWidget	,	they	could	do	this	easily:

import	{	NgModule	}	from	'@angular/core';

import	{	App	}	from	'./containers/app';	//	hypothetical	app	component

import	{	ChatWidget	}	from	'./components/chat-widget';

import	{	MockChatWidget	}	from	'./components/mock-chat-widget';

@NgModule({

		providers:	[{	provide:	ChatWidget,	useClass:	MockChatWidget	}],

})

export	class	DiExample	{};

The	best	part	of	this	implementation	swap	is	that	the	injection	system	knows	how	to	build
	MockChatWidget	,	and	will	sort	all	of	that	out.

The	injector	can	use	more	than	classes	though.		useValue		and		useFactory		are	two	other
examples	of		provider		"recipes"	that	Angular	can	use.	For	example:

Injection	Beyond	Classes

145

import	{	NgModule	}	from	'@angular/core';

import	{	App	}	from	'./containers/app';	//	hypothetical	app	component

const	randomFactory	=	()	=>	{	return	Math.random();	};

@NgModule({

		providers:	[{	provide:	'Random',	useFactory:	randomFactory	}],

})

export	class	DiExample	{};

In	the	hypothetical	app	component,	'Random'	could	be	injected	like:

import	{	Component,	Inject,	provide	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`Random:	{{	value	}}`

})

export	class	AppCompoennt	{

		value:	number;

		constructor(@Inject('Random')	r)	{

				this.value	=	r;

		}

}

View	Example

One	important	note	is	that	'Random'	is	in	quotes,	both	in	the		provide		function	and	in	the
consumer.	This	is	because	as	a	factory	we	have	no		Random		identifier	anywhere	to	access.

The	above	example	uses	Angular's		useFactory		recipe.	When	Angular	is	told	to		provide	
things	using		useFactory	,	Angular	expects	the	provided	value	to	be	a	function.	Sometimes
functions	and	classes	are	even	more	than	what's	needed.	Angular	has	a	"recipe"	called
	useValue		for	these	cases	that	works	almost	exactly	the	same:

import	{	NgModule	}	from	'@angular/core';

import	{	AppComponent	}	from	'./containers/app.component';	//	hypothetical	app	compone

nt

@NgModule({

		providers:	[{	provide:	'Random',	useValue:	Math.random()	}],

})

export	class	DiExample	{};

View	Example

Injection	Beyond	Classes

146

http://plnkr.co/edit/BKMZYlAviRhauCzxMnx6?p=preview
http://plnkr.co/edit/xGMOsHn1v3tTbc9RkuDz?p=preview

In	this	case,	the	product	of		Math.random		is	assigned	to	the		useValue		property	passed	to	the
	provider	.

Injection	Beyond	Classes

147

Avoiding	Injection	Collisions:
OpaqueToken
Since	Angular	allows	the	use	of	tokens	as	identifiers	to	its	dependency	injection	system,	one
of	the	potential	issues	is	using	the	same	token	to	represent	different	entities.	If,	for	example,
the	string		'token'		is	used	to	inject	an	entity,	it's	possible	that	something	totally	unrelated
also	uses		'token'		to	inject	a	different	entity.	When	it	comes	time	for	Angular	to	resolve	one
of	these	entities,	it	might	be	resolving	the	wrong	one.	This	behavior	might	happen	rarely	or
be	easy	to	resolve	when	it	happens	within	a	small	team	-	but	when	it	comes	to	multiple
teams	working	separately	on	the	same	codebase	or	3rd	party	modules	from	different
sources	are	integrated	these	collisions	become	a	bigger	issue.

Consider	this	example	where	the	main	application	is	a	consumer	of	two	modules:	one	that
provides	an	email	service	and	another	that	provides	a	logging	service.

app/email/email.service.ts

export	const	apiConfig	=	'api-config';

@Injectable()

export	class	EmailService	{

		constructor(@Inject(apiConfig)	public	apiConfig)	{	}

}

app/email/email.module.ts

@NgModule({

		providers:	[EmailService],

})

export	class	EmailModule	{	}

The	email	service	api	requires	some	configuration	settings,	identified	by	the	string		api-
config	,	to	be	provided	by	the	DI	system.	This	module	should	be	flexible	enough	so	that	it
can	be	used	by	different	modules	in	different	applications.	This	means	that	those	settings
should	be	determined	by	the	application	characteristics	and	therefore	provided	by	the
	AppModule		where	the		EmailModule		is	imported.

app/logger/logger.service.ts

Avoiding	Injection	Collisions:	OpaqueToken

148

export	const	apiConfig	=	'api-config';

@Injectable()

export	class	LoggerService	{

		constructor(@Inject(apiConfig)	public	apiConfig)	{	}

}

app/logger/logger.module.ts

@NgModule({

		providers:	[LoggerService],

})

export	class	LoggerModule	{	}

The	other	service,		LoggerModule	,	was	created	by	a	different	team	than	the	one	that	created
	EmailModule	,	and	it	that	also	requires	a	configuration	object.	Not	surprisingly,	they	decided
to	use	the	same	token	for	their	configuration	object,	the	string		api-config	.	In	an	effort	to
avoid	a	collision	between	the	two	tokens	with	the	same	name,	we	could	try	to	rename	the
imports	as	shown	below.	In	an	effort	to	avoid	a	collision	between	the	two	tokens	with	the
same	name,	we	could	try	to	rename	the	imports	as	shown	below.

app/app.module.ts

import	{	apiConfig	as	emailApiConfig	}	from	'./email/index';

import	{	apiConfig	as	loggerApiConfig	}	from	'./logger/index';

@NgModule({

		...

		providers:	[

				{	provide:	emailApiConfig,	useValue:	{	apiKey:	'email-key',	context:	'registration'

	}	},

				{	provide:	loggerApiConfig,	useValue:	{	apiKey:	'logger-key'	}	},

],

		...

})

export	class	AppModule	{	}

View	Example

When	the	application	runs,	it	encounters	a	collision	problem	resulting	in	both	modules
getting	the	same	value	for	their	configuration,	in	this	case		{	apiKey:	'logger-key'	}	.	When
it	comes	time	for	the	main	application	to	specify	those	settings,	Angular	overwrites	the	first
	emailApiConfig		value	with	the		loggerApiConfig		value,	since	that	was	provided	last.	In	this

Avoiding	Injection	Collisions:	OpaqueToken

149

https://plnkr.co/edit/QrvjsucT6lF6dnFUb2ag?p=preview

case,	module	implementation	details	are	leaking	out	to	the	parent	module.	Not	only	that,
those	details	were	obfuscated	through	the	module	exports	and	this	can	lead	to	problematic
debugging.	This	is	where	Angular's		OpaqueToken		comes	into	play.

OpaqueToken
	OpaqueToken	s	are	unique	and	immutable	values	which	allow	developers	to	avoid	collisions
of	dependency	injection	token	ids.

import	{	OpaqueToken	}	from	'@angular/core';

const	name	=	'token';

const	token1	=	new	OpaqueToken(name);

const	token2	=	new	OpaqueToken(name);

console.log(token1	===	token2);	//	false

Here,	regardless	of	whether	or	not	the	same	value	is	passed	to	the	constructor	of	the	token,
it	will	not	result	in	identical	symbols.

app/email/email.module.ts

export	const	apiConfig	=	new	OpaqueToken('api-config');

@Injectable()

export	class	EmailService	{

		constructor(@Inject(apiConfig)	public	apiConfig:	EmailConfig)	{	}

}

export	const	apiConfig	=	new	OpaqueToken('api-config');

@Injectable()

export	class	LoggerService	{

		constructor(@Inject(apiConfig)	public	apiConfig:	LoggerConfig)	{	}

}

View	Example

After	turning	the	identifying	tokens	into		OpaqueToken	s	without	changing	anything	else,	the
collision	is	avoided.	Every	service	gets	the	correct	configuration	object	from	the	root	module
and	Angular	is	now	able	to	differentiate	two	tokens	that	uses	the	same	string.

Avoiding	Injection	Collisions:	OpaqueToken

150

https://plnkr.co/edit/SHfTH9R6JVDwJKnzRFSH?p=preview

Avoiding	Injection	Collisions:	OpaqueToken

151

The	Injector	Tree
Angular	injectors	(generally)	return	singletons.	That	is,	in	the	previous	example,	all
components	in	the	application	will	receive	the	same	random	number.	In	Angular	1.x	there
was	only	one	injector,	and	all	services	were	singletons.	Angular	overcomes	this	limitation	by
using	a	tree	of	injectors.

In	Angular	there	is	not	just	one	injector	per	application,	there	is	at	least	one	injector	per
application.	Injectors	are	organized	in	a	tree	that	parallels	Angular's	component	tree.

Consider	the	following	tree,	which	models	a	chat	application	consisting	of	two	open	chat
windows,	and	a	login/logout	widget.

The	Injector	Tree

152

The	Injector	Tree

153

Figure:	Image	of	a	Component	Tree,	and	a	DI	Tree

In	the	image	above,	there	is	one	root	injector,	which	is	established	through		@NgModule	's
	providers		array.	There's	a		LoginService		registered	with	the	root	injector.

Below	the	root	injector	is	the	root		@Component	.	This	particular	component	has	no		providers	
array	and	will	use	the	root	injector	for	all	of	its	dependencies.

There	are	also	two	child	injectors,	one	for	each		ChatWindow		component.	Each	of	these
components	has	their	own	instantiation	of	a		ChatService	.

There	is	a	third	child	component,		Logout/Login	,	but	it	has	no	injector.

There	are	several	grandchild	components	that	have	no	injectors.	There	are		ChatFeed		and
	ChatInput		components	for	each		ChatWindow	.	There	are	also		LoginWidget		and
	LogoutWidget		components	with		Logout/Login		as	their	parent.

The	injector	tree	does	not	make	a	new	injector	for	every	component,	but	does	make	a	new
injector	for	every	component	with	a		providers		array	in	its	decorator.	Components	that	have
no		providers		array	look	to	their	parent	component	for	an	injector.	If	the	parent	does	not
have	an	injector,	it	looks	up	until	it	reaches	the	root	injector.

Warning:	Be	careful	with		provider		arrays.	If	a	child	component	is	decorated	with	a
	providers		array	that	contains	dependencies	that	were	also	requested	in	the	parent
component(s),	the	dependencies	the	child	receives	will	shadow	the	parent	dependencies.
This	can	have	all	sorts	of	unintended	consequences.

Consider	the	following	example:

app/module.ts

The	Injector	Tree

154

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	AppComponent	}	from	'./app.component';

import	{	ChildInheritorComponent,	ChildOwnInjectorComponent	}	from	'./components/index'

;

import	{	Unique	}	from	'./services/unique';

const	randomFactory	=	()	=>	{	return	Math.random();	};

@NgModule({

		imports:	[BrowserModule],

		declarations:	[

				AppComponent,

				ChildInheritorComponent,

				ChildOwnInjectorComponent,

],

		/**	Provide	dependencies	here	*/

		providers:	[Unique],

		bootstrap:	[AppComponent],

})

export	class	AppModule	{}

In	the	example	above,		Unique		is	bootstrapped	into	the	root	injector.

app/services/unique.ts

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	class	Unique	{

		value	=	(+Date.now()).toString(16)	+	'.'	+

				Math.floor(Math.random()	*	500);

}

The		Unique		service	generates	a	value	unique	to	its	instance	upon	instantiation.

app/components/child-inheritor.component.ts

The	Injector	Tree

155

import	{	Component,	Inject	}	from	'@angular/core';

import	{	Unique	}	from	'../services/unique';

@Component({

		selector:	'app-child-inheritor',

		template:	`{{	value	}}`

})

export	class	ChildInheritorComponent	{

		value	=	this.u.value;

		constructor(private	u:	Unique)	{	}

}

The	child	inheritor	has	no	injector.	It	will	traverse	the	component	tree	upwards	looking	for	an
injector.

app/components/child-own-injector.component.ts

import	{	Component,	Inject	}	from	'@angular/core';

import	{	Unique	}	from	'../services/unique';

@Component({

		selector:	'child-own-injector',

		template:	`{{	value	}}`,

		providers:	[Unique]

})

export	class	ChildOwnInjectorComponent	{

		value	=	this.u.value;

		constructor(private	u:	Unique)	{	}

}

The	child	own	injector	component	has	an	injector	that	is	populated	with	its	own	instance	of
	Unique	.	This	component	will	not	share	the	same	value	as	the	root	injector's		Unique	
instance.

app/containers/app.ts

The	Injector	Tree

156

@Component({

		selector:	'app-root',

		template:	`

				<p>

						App's	Unique	dependency	has	a	value	of	{{	value	}}

				</p>

				<p>

						which	should	match

				</p>

				<p>

						ChildInheritor's	value:

						<app-child-inheritor></app-child-inheritor>

				</p>

				<p>

						However,

				</p>

				<p>

						ChildOwnInjector	should	have	its	own	value:

						<app-child-own-injector></app-child-own-injector>

				</p>

				<p>

						ChildOwnInjector's	other	instance	should	also	have	its	own	value:

						<app-child-own-injector></app-child-own-injector>

				</p>`,

})

export	class	AppComponent	{

		value:	number	=	this.u.value;

		constructor(private	u:	Unique)	{	}

}

View	Example

The	Injector	Tree

157

http://plnkr.co/edit/abeUOuG8AdHDUcvjial8?p=preview

HTTP
In	order	to	start	making	HTTP	calls	from	our	Angular	app	we	need	to	import	the
	angular/http		module	and	register	for	HTTP	services.	It	supports	both	XHR	and	JSONP
requests	exposed	through	the		HttpModule		and		JsonpModule		respectively.	In	this	section	we
will	be	focusing	only	on	the		HttpModule	.

Setting	up	angular/http

In	order	to	use	the	various	HTTP	services	we	need	to	include		HttpModule		in	the	imports	for
the	root		NgModule	.	This	will	allow	us	to	access	HTTP	services	from	anywhere	in	the
application.

...

import	{	AppComponent	}	from	'./app.component'

import	{	HttpModule	}	from	'@angular/http';

@NgModule({

		imports:	[

				BrowserModule,

				ReactiveFormsModule,

				FormsModule,

				HttpModule

],

		providers:	[SearchService],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{}

Http

158

Making	HTTP	Requests
To	make	HTTP	requests	we	will	use	the		Http		service.	In	this	example	we	are	creating	a
	SearchService		to	interact	with	the	Spotify	API.

import	{	Http	}	from	'@angular/http';

import	{	Injectable	}	from	'@angular/core';

import	{	Observable	}	from	'rxjs/Observable';

import	'rxjs/add/operator/map';

@Injectable()

export	class	SearchService	{

		constructor(private	http:	Http)	{}

		search(term:	string)	{

				return	this.http

						.get('https://api.spotify.com/v1/search?q='	+	term	+	'&type=artist')

						.map(response	=>	response.json());

		}

}

View	Example

Here	we	are	making	an	HTTP	GET	request	which	is	exposed	to	us	as	an	observable.	You
will	notice	the		.map		operator	chained	to		.get	.	The		Http		service	provides	us	with	the	raw
response	as	a	string.	In	order	to	consume	the	fetched	data	we	have	to	convert	it	to	JSON.

In	addition	to		Http.get()	,	there	are	also		Http.post()	,		Http.put()	,		Http.delete()	,	etc.
They	all	return	observables.

Making	Requests

159

http://plnkr.co/edit/C8Zv9i?p=preview

Catching	Rejections
To	catch	rejections	we	use	the	subscriber's		error		and		complete		callbacks.

import	{	Http	}	from	'@angular/http';

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	class	AuthService	{

		constructor(private	http:	Http)	{}

		login(username,	password)	{

				const	payload	=	{

						username:	username,

						password:	password

				};

				this.http.post(`${	BASE_URL	}/auth/login`,	payload)

						.map(response	=>	response.json())

						.subscribe(

								authData	=>	this.storeToken(authData.id_token),

								(err)	=>	console.error(err),

								()	=>	console.log('Authentication	Complete')

);

		}

}

Catching	Rejections

160

Catch	and	Release
We	also	have	the	option	of	using	the		.catch		operator.	It	allows	us	to	catch	errors	on	an
existing	stream,	do	something,	and	pass	the	exception	onwards.

import	{	Http	}	from	'@angular/http';

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	class	SearchService	{

		constructor(private	http:	Http)	{}

		search(term:	string)	{

				return	this.http.get('https://api.spotify.com/v1/dsds?q='	+	term	+	'&type=artist')

						.map((response)	=>	response.json())

						.catch((e)	=>	{

								return	Observable.throw(

										new	Error(`${	e.status	}	${	e.statusText	}`)

);

						});

		}

}

View	Example

It	also	allows	us	to	inspect	the	error	and	decide	which	route	to	take.	For	example,	if	we
encounter	a	server	error	then	use	a	cached	version	of	the	request	otherwise	re-throw.

Catch	and	Release

161

http://plnkr.co/edit/3lCaeI?p=preview

@Injectable()

export	class	SearchService	{

		...

		search(term:	string)	{

				return	this.http.get(`https://api.spotify.com/v1/dsds?q=${term}&type=artist`)

						.map(response	=>	response.json())

						.catch(e	=>	{

								if	(e.status	>==		500)	{

										return	cachedVersion();

								}	else	{

										return	Observable.throw(

												new	Error(`${	e.status	}	${	e.statusText	}`)

);

								}

						});

		}

}

Catch	and	Release

162

Cancel	a	Request
Cancelling	an	HTTP	request	is	a	common	requirement.	For	example,	you	could	have	a
queue	of	requests	where	a	new	request	supersedes	a	pending	request	and	that	pending
request	needs	to	be	cancelled.

To	cancel	a	request	we	call	the		unsubscribe		function	of	its	subscription.

@Component({	/*	...	*/	})

export	class	AppComponent	{

		/*	...	*/

		search()	{

				const	request	=	this.searchService.search(this.searchField.value)

						.subscribe(

								result	=>	{	this.result	=	result.artists.items;	},

								err	=>	{	this.errorMessage	=	err.message;	},

								()	=>	{	console.log('Completed');	}

);

				request.unsubscribe();

		}

}

View	Example

Cancel	a	Request

163

http://plnkr.co/edit/XQL8v9?p=preview

Retry
There	are	times	when	you	might	want	to	retry	a	failed	request.	For	example,	if	the	the	user	is
offline	you	might	want	to	retry	a	few	times	or	indefinitely.

Figure:	Retry	example	from	Slack

Use	the	RxJS		retry		operator.	It	accepts	a		retryCount		argument.	If	not	provided,	it	will
retry	the	sequence	indefinitely.

Note	that	the	error	callback	is	not	invoked	during	the	retry	phase.	If	the	request	fails	it	will	be
retried	and	only	after	all	the	retry	attempts	fail	the	stream	throws	an	error.

Retry

164

import	{	Http	}	from	'@angular/http';

import	{	Injectable	}	from	'@angular/core';

import	{	Observable	}	from	'rxjs/Rx';

@Injectable()

export	class	SearchService	{

		constructor(private	http:	Http)	{}

		search(term:	string)	{

				let	tryCount	=	0;

				return	this.http.get('https://api.spotify.com/v1/dsds?q='	+	term	+	'&type=artist')

						.map(response	=>	response.json())

						.retry(3);

		}

}

View	Example

Retry

165

http://plnkr.co/edit/zSAWwV?p=preview

Combining	Streams	with	 	flatMap	

Figure:	FlatMap	created	by	ReactiveX	licensed	under	CC-3
(http://reactivex.io/documentation/operators/flatmap.html)

A	case	for	FlatMap:

A	simple	observable	stream
A	stream	of	arrays
Filter	the	items	from	each	event
Stream	of	filtered	items
Filter	+	map	simplified	with	flatMap

Let's	say	we	wanted	to	implement	an	AJAX	search	feature	in	which	every	keypress	in	a	text
field	will	automatically	perform	a	search	and	update	the	page	with	the	results.	How	would
this	look?	Well	we	would	have	an		Observable		subscribed	to	events	coming	from	an	input
field,	and	on	every	change	of	input	we	want	to	perform	some	HTTP	request,	which	is	also	an
	Observable		we	subscribe	to.	What	we	end	up	with	is	an		Observable		of	an		Observable	.

By	using		flatMap		we	can	transform	our	event	stream	(the	keypress	events	on	the	text	field)
into	our	response	stream	(the	search	results	from	the	HTTP	request).

app/services/search.service.ts

Search	with	flatMap

166

http://jsbin.com/nutegi/36/edit?js,console
http://jsbin.com/lerake/3/edit?js,console
http://jsbin.com/widadiz/2/edit?js,console
http://jsbin.com/reyoja/2/edit?js,console
http://jsbin.com/sahiye/2/edit?js,console

import	{Http}	from	'@angular/http';

import	{Injectable}	from	'@angular/core';

@Injectable()

export	class	SearchService	{

		constructor(private	http:	Http)	{}

		search(term:	string)	{

				return	this.http

												.get('https://api.spotify.com/v1/search?q='	+	term	+	'&type=artist')

												.map((response)	=>	response.json())

		}

}

Here	we	have	a	basic	service	that	will	undergo	a	search	query	to	Spotify	by	performing	a	get
request	with	a	supplied	search	term.	This		search		function	returns	an		Observable		that	has
had	some	basic	post-processing	done	(turning	the	response	into	a	JSON	object).

OK,	let's	take	a	look	at	the	component	that	will	be	using	this	service.

app/app.component.ts

Search	with	flatMap

167

import	{	Component	}	from	'@angular/core';

import	{	FormControl,

				FormGroup,

				FormBuilder	}	from	'@angular/forms';

import	{	SearchService	}	from	'./services/search.service';

import	'rxjs/Rx';

@Component({

				selector:	'app-root',

				template:	`

								<form	[formGroup]="coolForm"><input	formControlName="search"	placeholder="Sear

ch	Spotify	artist"></form>

								<div	*ngFor="let	artist	of	result">

										{{artist.name}}

								</div>

				`

})

export	class	AppComponent	{

				searchField:	FormControl;

				coolForm:	FormGroup;

				constructor(private	searchService:SearchService,	private	fb:FormBuilder)	{

								this.searchField	=	new	FormControl();

								this.coolForm	=	fb.group({search:	this.searchField});

								this.searchField.valueChanges

										.debounceTime(400)

												.flatMap(term	=>	this.searchService.search(term))

												.subscribe((result)	=>	{

																this.result	=	result.artists.items

												});

				}

}

View	Example

Here	we	have	set	up	a	basic	form	with	a	single	field,		search	,	which	we	subscribe	to	for
event	changes.	We've	also	set	up	a	simple	binding	for	any	results	coming	from	the
	SearchService	.	The	real	magic	here	is		flatMap		which	allows	us	to	flatten	our	two	separate
subscribed		Observables		into	a	single	cohesive	stream	we	can	use	to	control	events	coming
from	user	input	and	from	server	responses.

Note	that	flatMap	flattens	a	stream	of		Observables		(i.e		Observable		of		Observables)	to	a
stream	of	emitted	values	(a	simple		Observable),	by	emitting	on	the	"trunk"	stream
everything	that	will	be	emitted	on	"branch"	streams.

Search	with	flatMap

168

http://plnkr.co/edit/L6CLXo?p=preview

Search	with	flatMap

169

Enhancing	Search	with	 	switchMap	
There	is	a	problem	with	our	previous	implementation	of	incremental	search.

What	if	the	server,	for	some	reason,	takes	a	very	long	time	to	respond	to	a	particular	query?
If	we	use		flatMap	,	we	run	the	risk	of	getting	results	back	from	the	server	in	the	wrong	order.
Let's	illustrate	this	with	an	example.

A	Quick	Example
Consider	a	situation	where	we	first	type	in	the	letters		ABC	,	and	suppose	the	string		ABC		is
actually	a	special	string	where	it	will	take	the	server	a	few	extra	seconds	to	reply.

Meanwhile,	after	we	paused	for	a	bit	(more	than	the	debounce	time),	we	decide	to	type	in
another	letter	(the	letter	X)	and	our	app	sends	a	request	to	the	server	for	the	string		ABCX	.
Since		ABCX		is	not	considered	a	special	string,	the	server	replies	very	quickly	and	our	app
sets	the	suggestions	for		ABCX	.

A	few	seconds	later,	however,	the	server	finally	replies	with	the	response	for	the		ABC		string,
and	our	app	receives	that	response	and	sets	the	search	suggestions	for		ABC	,	overwriting
the	suggestions	for	the		ABCX		string,	even	though	the	request	for	that	actually	came
afterwards.

Here	is	a	simple	diagram	to	illustrate	the	issue:

//	A1:	Request	for	`ABC`

//	A2:	Response	for	`ABC`

//	B1:	Request	for	`ABCX`

//	B2:	Response	for	`ABCX`

--A1----------A2-->

------B1--B2------>

You	can	see	that	A2	arrives	after	B2	even	though	the	A1	request	began	first.	This	will	end	up
showing	the	wrong	results	to	the	user.	"If	the	last	input	in	the	search	was		ABCX		why	am	I
seeing	the	results	for		ABC	?"	the	user	might	think.	To	get	around	this	problem	we	need	to
replace		flatMap		with		switchMap	.

What	is		switchMap	?

Enhancing	Search	with	switchMap

170

	switchMap		is	very	similar	to		flatMap	,	but	with	a	very	important	distinction.	Any	events	to	be
merged	into	the	trunk	stream	are	ignored	if	a	new	event	comes	in.	Here	is	a	marble	diagram
showing	the	behavior	of		switchMap	:

Figure:	SwitchMap	created	by	ReactiveX	licensed	under	CC-3
(http://reactivex.io/documentation/operators/flatmap.html)

In	short,	every	time	an	event	comes	down	the	stream,		flatMap		will	subscribe	to	(and
invoke)	a	new	observable	without	unsubscribing	from	any	other	observable	created	by	a
previous	event.		switchMap		on	the	other	hand	will	automatically	unsubscribe	from	any
previous	observable	when	a	new	event	comes	down	the	stream.

In	the	diagram	above,	the	round	"marbles"	represent	events	in	the	originating	stream.	In	the
resulting	stream,	"diamonds"	mark	the	creation	(and	subscription)	of	an	inner	observable
(that	is	eventually	merged	onto	the	trunk	stream)	and	"squares"	represent	values	emitted
from	that	same	inner	observable.

Just	like		flatMap	,	the	red	marble	gets	replaced	with	a	red	diamond	and	a	subsequent	red
square.	The	interaction	between	the	green	and	blue	marble	events	are	more	interesting.
Note	that	the	green	marble	gets	mapped	to	a	green	diamond	immediately.	And	if	enough
time	had	passed,	a	green	square	would	be	pushed	into	the	trunk	stream	but	we	do	not	see
that	here.

Before	the	green	square	event	is	able	to	happen,	a	blue	marble	comes	through	and	gets
mapped	to	a	blue	diamond.	What	happened	is	that	the	green	square	is	now	ignored	and	do
not	get	merged	back	into	the	trunk	stream.	The	behavior	of		switchMap		can	be	likened	to	a

Enhancing	Search	with	switchMap

171

	flatMap		that	"switches"	to	the	more	immediate	incoming	event	and	ignores	all	previously
created	event	streams.

In	our	case,	because	the	blue	marble	event	happened	very	quickly	after	the	green	marble,
we	"switched"	over	to	focus	on	dealing	with	the	blue	marble	instead.	This	behavior	is	what
will	prevent	the	problem	we	described	above.

If	we	apply		switchMap		to	the	above	example,	the	response	for		ABC		would	be	ignored	and
the	suggestions	for		ABCX		would	remain.

Enhanced	Search	with		switchMap	
Here	is	the	revised	component	using		switchMap		instead	of		flatMap	.

app/app.component.ts

Enhancing	Search	with	switchMap

172

import	{	Component	}	from	'@angular/core';

import	{	FormControl,

				FormGroup,

				FormBuilder	}	from	'@angular/forms';

import	{	SearchService	}	from	'./services/search.service';

import	'rxjs/Rx';

@Component({

				selector:	'app-root',

				template:	`

								<form	[formGroup]="coolForm"><input	formControlName="search"	placeholder="Sear

ch	Spotify	artist"></form>

								<div	*ngFor="let	artist	of	result">

										{{artist.name}}

								</div>

				`

})

export	class	AppComponent	{

				searchField:	FormControl;

				coolForm:	FormGroup;

				constructor(private	searchService:SearchService,	private	fb:FormBuilder)	{

								this.searchField	=	new	FormControl();

								this.coolForm	=	fb.group({search:	this.searchField});

								this.searchField.valueChanges

										.debounceTime(400)

												.switchMap(term	=>	this.searchService.search(term))

												.subscribe((result)	=>	{

																this.result	=	result.artists.items

												});

				}

}

View	Example

This	implementation	of	incremental	search	with		switchMap		is	more	robust	than	the	one	we
saw	on	the	previous	page	with		flatMap	.	The	suggestions	that	the	user	sees	will	always
eventually	reflect	the	last	thing	the	user	typed.	Thanks	to	this,	we	can	guarantee	a	great	user
experience	regardless	of	how	the	server	responds.

Further	Resources
SwitchMap	Examples
Egghead	Video	Tutorial	on	SwitchMap

Enhancing	Search	with	switchMap

173

http://plnkr.co/edit/FYLTcx?p=preview
https://www.learnrxjs.io/operators/transformation/switchmap.html
https://egghead.io/lessons/rxjs-starting-a-stream-with-switchmap?course=step-by-step-async-javascript-with-rxjs

RxJS	Documentation	for	SwitchMap

Enhancing	Search	with	switchMap

174

http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-switchMap

Requests	as	Promises
The	observable	returned	by	Angular	http	client	can	be	converted	it	into	a	promise.

We	recommend	using	observables	over	promises.	By	converting	to	a	promise	you	will
be	lose	the	ability	to	cancel	a	request	and	the	ability	to	chain	RxJS	operators.

import	{	Http	}	from	'@angular/http';

import	{	Injectable	}	from	'@angular/core';

import	'rxjs/add/operator/map';

import	'rxjs/add/operator/toPromise';

@Injectable()

export	class	SearchService	{

		constructor(private	http:	Http)	{}

		search(term:	string)	{

				return	this.http

						.get(`https://api.spotify.com/v1/search?q=${term}&type=artist`)

						.map((response)	=>	response.json())

						.toPromise();

		}

}

We	would	then	consume	it	as	a	regular	promise	in	the	component.

@Component({	/*	...	*/	})

export	class	AppComponent	{

				/*	...	*/

				search()	{

								this.searchService.search(this.searchField.value)

										.then((result)	=>	{

								this.result	=	result.artists.items;

						})

						.catch((error)	=>	console.error(error));

				}

}

Requests	as	Promises

175

Change	Detection

Figure:	Change	Detector	by	Vovka	is	licensed	under	Public	Domain
(https://pixabay.com/en/coins-handful-russia-ruble-kopek-650779/)

Change	detection	is	the	process	that	allows	Angular	to	keep	our	views	in	sync	with	our
models.

Change	detection	has	changed	in	a	big	way	between	the	old	version	of	Angular	and	the	new
one.	In	Angular	1,	the	framework	kept	a	long	list	of	watchers	(one	for	every	property	bound
to	our	templates)	that	needed	to	be	checked	every-time	a	digest	cycle	was	started.	This	was
called	dirty	checking	and	it	was	the	only	change	detection	mechanism	available.

Because	by	default	Angular	1	implemented	two	way	data	binding,	the	flow	of	changes	was
pretty	much	chaotic,	models	were	able	to	change	directives,	directives	were	able	to	change
models,	directives	were	able	to	change	other	directives	and	models	were	able	to	change
other	models.

Change	Detection

176

In	Angular,	the	flow	of	information	is	unidirectional,	even	when	using		ngModel		to
implement	two	way	data	binding,	which	is	only	syntactic	sugar	on	top	of	the	unidirectional
flow.	In	this	new	version	of	the	framework,	our	code	is	responsible	for	updating	the	models.
Angular	is	only	responsible	for	reflecting	those	changes	in	the	components	and	the	DOM	by
means	of	the	selected	change	detection	strategy.

Change	Detection

177

Change	Detection	Strategies	in	Angular
1.x	vs	Angular	2
Another	difference	between	both	versions	of	the	framework	is	the	way	the	nodes	of	an
application	(directives	or	components)	are	checked	to	see	if	the	DOM	needs	to	be	updated.

Because	of	the	nature	of	two-way	data	binding,	in	Angular	1	there	was	no	guarantee	that	a
parent	node	would	always	be	checked	before	a	child	node.	It	was	possible	that	a	child	node
could	change	a	parent	node	or	a	sibling	or	any	other	node	in	the	tree,	and	that	in	turn	would
trigger	new	updates	down	the	chain.	This	made	it	difficult	for	the	change	detection
mechanism	to	traverse	all	the	nodes	without	falling	in	a	circular	loop	with	the	infamous
message:

10	$digest()	iterations	reached.	Aborting!

In	Angular,	changes	are	guaranteed	to	propagate	unidirectionally.	The	change	detector	will
traverse	each	node	only	once,	always	starting	from	the	root.	That	means	that	a	parent
component	is	always	checked	before	its	children	components.

Tree	traversing	in	Angular	1.x	vs	Angular	2

Change	Detection	Strategies	in	Angular	1	vs	Angular	2

178

Figure:	File	Structure

Change	Detection	Strategies	in	Angular	1	vs	Angular	2

179

How	Change	Detection	Works
Let's	see	how	change	detection	works	with	a	simple	example.

We	are	going	to	create	a	simple		MovieApp		to	show	information	about	one	movie.	This	app	is
going	to	consist	of	only	two	components:	the		MovieComponent		that	shows	information	about
the	movie	and	the		AppComponent		which	holds	a	reference	to	the	movie	with	buttons	to
perform	some	actions.

Our		AppComponent		will	have	three	properties:	the		slogan		of	the	app,	the		title		of	the
movie	and	the	lead		actor	.	The	last	two	properties	will	be	passed	to	the		MovieComponent	
element	referenced	in	the	template.

app/app.component.ts

import	{Component}	from	'@angular/core';

import	{MovieComponent}	from	'./movie.component';

import	{Actor}	from	'./actor.model';

@Component({

		selector:	'app-root',

		template:	`

				<h1>MovieApp</h1>

				<p>{{	slogan	}}</p>

				<button	type="button"	(click)="changeActorProperties()">

						Change	Actor	Properties

				</button>

				<button	type="button"	(click)="changeActorObject()">

						Change	Actor	Object

				</button>

				<app-movie	[title]="title"	[actor]="actor"></app-movie>`

})

export	class	AppComponent	{

		slogan	=	'Just	movie	information';

		title	=	'Terminator	1';

		actor	=	new	Actor('Arnold',	'Schwarzenegger');

		changeActorProperties()	{

				this.actor.firstName	=	'Nicholas';

				this.actor.lastName	=	'Cage';

		}

		changeActorObject()	{

				this.actor	=	new	Actor('Bruce',	'Willis');

		}

}

How	Change	Detection	Works

180

In	the	above	code	snippet,	we	can	see	that	our	component	defines	two	buttons	that	trigger
different	methods.	The		changeActorProperties		will	update	the	lead	actor	of	the	movie	by
directly	changing	the	properties	of	the		actor		object.	In	contrast,	the	method
	changeActorObject		will	change	the	information	of	the	actor	by	creating	a	completely	new
instance	of	the		Actor		class.

The		Actor		model	is	pretty	straightforward,	it	is	just	a	class	that	defines	the		firstName		and
the		lastName		of	an	actor.

app/actor.model.ts

export	class	Actor	{

		constructor(

				public	firstName:	string,

				public	lastName:	string)	{}

}

Finally,	the		MovieComponent		shows	the	information	provided	by	the		AppComponent		in	its
template.

app/movie.component.ts

import	{	Component,	Input	}	from	'@angular/core';

import	{	Actor	}	from	'./actor.model';

@Component({

		selector:	'app-movie',

		template:	`

				<div>

						<h3>{{	title	}}</h3>

						<p>

								<label>Actor:</label>

								{{actor.firstName}}	{{actor.lastName}}

						</p>

				</div>`

})

export	class	MovieComponent	{

		@Input()	title:	string;

		@Input()	actor:	Actor;

}

View	Example

How	Change	Detection	Works

181

http://plnkr.co/edit/RKfTH5xSEA9KhuY9quSa?p=preview

Change	Detector	Classes
At	runtime,	Angular	will	create	special	classes	that	are	called	change	detectors,	one	for
every	component	that	we	have	defined.	In	this	case,	Angular	will	create	two	classes:
	AppComponent		and		AppComponent_ChangeDetector	.

The	goal	of	the	change	detectors	is	to	know	which	model	properties	used	in	the	template	of
a	component	have	changed	since	the	last	time	the	change	detection	process	ran.

In	order	to	know	that,	Angular	creates	an	instance	of	the	appropriate	change	detector	class
and	a	link	to	the	component	that	it's	supposed	to	check.

In	our	example,	because	we	only	have	one	instance	of	the		AppComponent		and	the
	MovieComponent	,	we	will	have	only	one	instance	of	the		AppComponent_ChangeDetector		and	the
	MovieComponent_ChangeDetector	.

The	code	snippet	below	is	a	conceptual	model	of	how	the		AppComponent_ChangeDetector	
class	might	look.

class	AppComponent_ChangeDetector	{

		constructor(

				public	previousSlogan:	string,

				public	previousTitle:	string,

				public	previousActor:	Actor,

				public	movieComponent:	MovieComponent

)	{}

		detectChanges(slogan:	string,	title:	string,	actor:	Actor)	{

				if	(slogan	!==	this.previousSlogan)	{

						this.previousSlogan	=	slogan;

						this.movieComponent.slogan	=	slogan;

				}

				if	(title	!==	this.previousTitle)	{

						this.previousTitle	=	title;

						this.movieComponent.title	=	title;

				}

				if	(actor	!==	this.previousActor)	{

						this.previousActor	=	actor;

						this.movieComponent.actor	=	actor;

				}

		}

}

Change	Detector	Classes

182

Because	in	the	template	of	our		AppComponent		we	reference	three	variables	(slogan	,		title	
and		actor),	our	change	detector	will	have	three	properties	to	store	the	"old"	values	of	these
three	properties,	plus	a	reference	to	the		AppComponent		instance	that	it's	supposed	to
"watch".	When	the	change	detection	process	wants	to	know	if	our		AppComponent		instance
has	changed,	it	will	run	the	method		detectChanges		passing	the	current	model	values	to
compare	with	the	old	ones.	If	a	change	was	detected,	the	component	gets	updated.

Disclaimer:	This	is	just	a	conceptual	overview	of	how	change	detector	classes	work;	the
actual	implementation	may	be	different.

Change	Detection	Strategy:	Default
By	default,	Angular	defines	a	certain	change	detection	strategy	for	every	component	in	our
application.	To	make	this	definition	explicit,	we	can	use	the	property		changeDetection		of	the
	@Component		decorator.

app/movie.component.ts

import	{	ChangeDetectionStrategy	}	from	'@angular/core';

@Component({

		//	...

		changeDetection:	ChangeDetectionStrategy.Default

})

export	class	MovieComponent	{

		//	...

}

View	Example

Let's	see	what	happens	when	a	user	clicks	the	button	"Change	Actor	Properties"	when	using
the		Default		strategy.

As	noted	previously,	changes	are	triggered	by	events	and	the	propagation	of	changes	is
done	in	two	phases:	the	application	phase	and	the	change	detection	phase.

Phase	1	(Application):

In	the	first	phase,	the	application	(our	code)	is	responsible	for	updating	the	models	in
response	to	some	event.	In	this	scenario,	the	properties		actor.firstName		and
	actor.lastName		are	updated.

Phase	2	(Change	Detection):

Change	Detector	Classes

183

http://plnkr.co/edit/yBekf1Do7UeB8F4EQzxU?p=preview

Now	that	our	models	are	updated,	Angular	must	update	the	templates	using	change
detection.

Change	detection	always	starts	at	the	root	component,	in	this	case	the		AppComponent	,	and
checks	if	any	of	the	model	properties	bound	to	its	template	have	changed,	comparing	the	old
value	of	each	property	(before	the	event	was	triggered)	to	the	new	one	(after	the	models
were	updated).	The		AppComponent		template	has	a	reference	to	three	properties,		slogan	,
	title		and		actor	,	so	the	comparison	made	by	its	corresponding	change	detector	will	look
like:

Is		slogan	!==	previousSlogan	?	No,	it's	the	same.
Is		title	!==	previousTitle	?	No,	it's	the	same.
Is		actor	!==	previousActor	?	No,	it's	the	same.

Notice	that	even	if	we	change	the	properties	of	the		actor		object,	we	are	always	working
with	the	same	instance.	Because	we	are	doing	a	shallow	comparison,	the	result	of	asking	if
	actor	!==	previousActor		will	always	be		false		even	when	its	internal	property	values	have
indeed	changed.	Even	though	the	change	detector	was	unable	to	find	any	change,	the
default	strategy	for	the	change	detection	is	to	traverse	all	the	components	of	the	tree
even	if	they	do	not	seem	to	have	been	modified.

Next,	change	detection	moves	down	in	the	component	hierarchy	and	check	the	properties
bound	to	the		MovieComponent	's	template	doing	a	similar	comparison:

Is		title	!==	previousTitle	?	No,	it's	the	same.
Is		actorFirstName	!==	previousActorFirstName	?	Yes,	it	has	changed.
Is		actorLastName	!==	previousActorLastName	?	Yes,	it	has	changed.

Finally,	Angular	has	detected	that	some	of	the	properties	bound	to	the	template	have
changed	so	it	will	update	the	DOM	to	get	the	view	in	sync	with	the	model.

Performance	Impact
Traversing	all	the	tree	components	to	check	for	changes	could	be	costly.	Imagine	that
instead	of	just	having	one	reference	to		<app-movie>		inside	our		AppComponent	's	template,	we
have	multiple	references?

<movie	*ngFor="let	movie	of	movies"	[title]="movie.title"	[actor]="movie.actor"></movie

>`

If	our	movie	list	grows	too	big,	the	performance	of	our	system	will	start	degrading.	We	can
narrow	the	problem	to	one	particular	comparison:

Change	Detector	Classes

184

Is		actor	!==	previousActor	?

As	we	have	learned,	this	result	is	not	very	useful	because	we	could	have	changed	the
properties	of	the	object	without	changing	the	instance,	and	the	result	of	the	comparison	will
always	be		false	.	Because	of	this,	change	detection	is	going	to	have	to	check	every	child
component	to	see	if	any	of	the	properties	of	that	object	(firstName		or		lastName)	have
changed.

What	if	we	can	find	a	way	to	indicate	to	the	change	detection	that	our		MovieComponent	
depends	only	on	its	inputs	and	that	these	inputs	are	immutable?	In	short,	we	are	trying	to
guarantee	that	when	we	change	any	of	the	properties	of	the		actor		object,	we	end	up	with	a
different		Actor		instance	so	the	comparison		actor	!==	previousActor		will	always	return
	true	.	On	the	other	hand,	if	we	did	not	change	any	property,	we	are	not	going	to	create	a
new	instance,	so	the	same	comparison	is	going	to	return		false	.

If	the	above	condition	can	be	guaranteed	(create	a	new	object	every	time	any	of	its
properties	changes,	otherwise	we	keep	the	same	object)	and	when	checking	the	inputs	of
the		MovieComponent		has	this	result:

Is		title	!==	previousTitle	?	No,	it's	the	same.
Is		actor	!==	previousActor	?	No,	it's	the	same.

then	we	can	skip	the	internal	check	of	the	component's	template	because	we	are	now
certain	that	nothing	has	changed	internally	and	there's	no	need	to	update	the	DOM.	This	will
improve	the	performance	of	the	change	detection	system	because	fewer	comparisons	have
to	be	made	to	propagate	changes	through	the	app.

Change	Detector	Classes

185

Change	Detection	Strategy:	OnPush
To	inform	Angular	that	we	are	going	to	comply	with	the	conditions	mentioned	before	to
improve	performance,	we	will	use	the		OnPush		change	detection	strategy	on	the
	MovieComponent	.

app/movie.component.ts

@Component({

		//	...

		changeDetection:	ChangeDetectionStrategy.OnPush

})

export	class	MovieComponent	{

		//	...

}

View	Example

This	will	inform	Angular	that	our	component	only	depends	on	its	inputs	and	that	any	object
that	is	passed	to	it	should	be	considered	immutable.	This	time	when	we	click	the	"Change
Actor	Properties"	button	nothing	changes	in	the	view.

Let's	follow	the	logic	behind	it	again.	When	the	user	clicks	the	button,	the	method
	changeActorProperties		is	called	and	the	properties	of	the		actor		object	get	updated.

When	the	change	detection	analyzes	the	properties	bound	to	the		AppComponent	's	template,
it	will	see	the	same	picture	as	before:

Is		slogan	!==	previousSlogan		No,	it's	the	same.
Is		title	!==	previousTitle	?	No,	it's	the	same.
Is		actor	!==	previousActor	?	No,	it's	the	same.

But	this	time,	we	explicitly	told	Angular	that	our	component	only	depends	on	its	inputs	and	all
of	them	are	immutable.	Angular	then	assumes	that	the		MovieComponent		hasn't	changed	and
will	skip	the	check	for	that	component.	Because	we	didn't	force	the		actor		object	to	be
immutable,	we	end	up	with	our	model	out	of	sync	with	the	view.

Let's	rerun	the	app	but	this	time	we	will	click	the	"Change	Actor	Object"	button.	This	time,	we
are	creating	a	new	instance	of	the		Actor		class	and	assigning	it	to	the		this.actor		object.
When	change	detection	analyzes	the	properties	bound	to	the		AppComponent	's	template	it	will
find:

Is		slogan	!==	previousSlogan		No,	it's	the	same.

Change	Detection	Strategy:	OnPush

186

http://plnkr.co/edit/yjr8R6LhWpOKcGnAwYNS?p=preview

Is		title	!==	previousTitle	?	No,	it's	the	same.
Is		actor	!==	previousActor	?	Yes,	it	has	changed.

Because	change	detection	now	knows	that	the		actor		object	changed	(it's	a	new	instance)	it
will	go	ahead	and	continue	checking	the	template	for		MovieComponent		to	update	its	view.	At
the	end,	our	templates	and	models	are	in	sync.

Change	Detection	Strategy:	OnPush

187

Enforcing	Immutability
We	cheated	a	little	in	the	previous	example.	We	told	Angular	that	all	of	our	inputs,	including
the		actor		object,	were	immutable	objects,	but	we	went	ahead	and	updated	its	properties,
violating	the	immutability	principle.	As	a	result	we	ended	up	with	a	sync	problem	between
our	models	and	our	views.	One	way	to	enforce	immutability	is	using	the	library	Immutable.js.

Because	in	JavaScript	primitive	types	like		string		and		number		are	immutable	by	definition,
we	should	only	take	care	of	the	objects	we	are	using.	In	this	case,	the		actor		object.

Here's	an	example	comparing	a	mutable	type	like	an		array		to	an	immutable	type	like	a
	string	:

var	b	=	['C',	'a',	'r'];

b[0]	=	'B';

console.log(b)	//	['B',	'a',	'r']	=>	The	first	letter	changed,	arrays	are	mutable

var	a	=	'Car';

a[0]	=	'B';

console.log(a);	//	'Car'	=>	The	first	letter	didn't	change,	strings	are	immutable

First	we	need	to	install	the		immutable.js		library	using	the	command:

npm	install	--save	immutable

Then	in	our		AppComponent		we	import	the	library	and	use	it	to	create	an	actor	object	as	an
immutable.

app/app.component.ts

Enforcing	Immutability

188

https://facebook.github.io/immutable-js/

import	{	Component	}	from	'@angular/core';

import	{	MovieComponent	}	from	'./movie.component';

import	*	as	Immutable	from	'immutable';

@Component({

		selector:	'app-root',

		template:	`

				<h1>MovieApp</h1>

				<p>{{	slogan	}}</p>

				<button	type="button"	(click)="changeActor()">

						Change	Actor

				</button>

				<app-movie	[title]="title"	[actor]="actor"></app-movie>`

})

export	class	AppComponent	{

		slogan	=	'Just	movie	information';

		title	=	'Terminator	1';

		actor	=	Immutable.Map({

				firstName:	'Arnold',

				lastName:	'Schwarzenegger'

		})

		changeActor()	{

				this.actor	=	this.actor.merge({	firstName:	'Nicholas',	lastName:	'Cage'	});

		}

}

Now,	instead	of	creating	an	instance	of	an		Actor		class,	we	are	defining	an	immutable
object	using		Immutable.Map	.	Because		this.actor		is	now	an	immutable	object,	we	cannot
change	its	internal	properties	(firstName		and		lastName)	directly.	What	we	can	do	however
is	create	another	object	based	on		actor		that	has	different	values	for	both	fields	-	that	is
exactly	what	the		merge		method	does.

Because	we	are	always	getting	a	new	object	when	we	try	to	change	the		actor	,	there's	no
point	in	having	two	different	methods	in	our	component.	We	removed	the	methods
	changeActorProperties		and		changeActorObject		and	created	a	new	one	called		changeActor	.

Additional	changes	have	to	be	made	to	the		MovieComponent		as	well.	First	we	need	to
declare	the		actor		object	as	an	immutable	type,	and	in	the	template,	instead	of	trying	to
access	the	object	properties	directly	using	a	syntax	like		actor.firstName	,	we	need	to	use
the		get		method	of	the	immutable.

app/movie.component.ts

Enforcing	Immutability

189

import	{	Component,	Input	}	from	'@angular/core';

import	{	ChangeDetectionStrategy	}	from	'@angular/core';

import	*	as	Immutable	from	'immutable';

@Component({

		selector:	'app-movie',

		template:	`

				<div>

						<h3>{{	title	}}</h3>

						<p>

								<label>Actor:</label>

								{{	actor.get('firstName')	}}	{{	actor.get('lastName')	}}

						</p>

				</div>`,

		changeDetection:	ChangeDetectionStrategy.OnPush

})

export	class	MovieComponent	{

		@Input()	title:	string;

		@Input()	actor:	Immutable.Map<string,	string>;

}

View	Example

Using	this	pattern	we	are	taking	full	advantage	of	the	"OnPush"	change	detection	strategy
and	thus	reducing	the	amount	of	work	done	by	Angular	to	propagate	changes	and	to	get
models	and	views	in	sync.	This	improves	the	performance	of	the	application.

Enforcing	Immutability

190

http://plnkr.co/edit/0Qp7ynAcZCqcv67OvsSD?p=preview

Additional	Resources
To	learn	more	about	change	detection,	visit	the	following	links	(in	order	of	relevance):

NgConf	2014:	Change	Detection	(Video)
Angular	API	Docs:	ChangeDetectionStrategy
Victor	Savkin	Blog:	Change	Detection	in	Angular	2
Victor	Savkin	Blog:	Two	Phases	of	Angular	2	Applications
Victor	Savkin	Blog:	Angular,	Immutability	and	Encapsulation

Additional	Resources

191

https://www.youtube.com/watch?v=jvKGQSFQf10
https://angular.io/docs/ts/latest/api/core/index/ChangeDetectionStrategy-enum.html
http://victorsavkin.com/post/110170125256/change-detection-in-angular-2
http://victorsavkin.com/post/114168430846/two-phases-of-angular-2-applications
http://victorsavkin.com/post/133936129316/angular-immutability-and-encapsulation

Zones
Zone.js	provides	a	mechanism,	called	zones,	for	encapsulating	and	intercepting
asynchronous	activities	in	the	browser	(e.g.		setTimeout	,	,	promises).

These	zones	are	execution	contexts	that	allow	Angular	to	track	the	start	and	completion	of
asynchronous	activities	and	perform	tasks	as	required	(e.g.	change	detection).	Zone.js
provides	a	global	zone	that	can	be	forked	and	extended	to	further	encapsulate/isolate
asynchronous	behaviour,	which	Angular	does	so	in	its	NgZone	service,	by	creating	a	fork
and	extending	it	with	its	own	behaviours.

The	NgZone	service	provides	us	with	a	number	of	Observables	and	methods	for
determining	the	state	of	Angular's	zone	and	to	execute	code	in	different	ways	inside	and
outside	Angular's	zone.

It	is	important	to	know	that	Zone.js	accomplishes	these	various	interceptions	by	Monkey
Patching	common	methods	and	elements	in	the	browser,	e.g.		setTimeout		and
	HTMLElement.prototype.onclick	.	These	interceptions	can	cause	unexpected	behaviour
between	external	libraries	and	Angular.	In	some	cases,	it	may	be	preferential	to	execute
third	party	methods	outside	of	Angular's	zone	(see	below).

In	The	Zone
NgZone	exposes	a	set	of	Observables	that	allow	us	to	determine	the	current	status,	or
stability,	of	Angular's	zone.

onUnstable	–	Notifies	when	code	has	entered	and	is	executing	within	the	Angular	zone.
onMicrotaskEmpty	-	Notifies	when	no	more	microtasks	are	queued	for	execution.
Angular	subscribes	to	this	internally	to	signal	that	it	should	run	change	detection.
onStable	–	Notifies	when	the	last		onMicroTaskEmpty		has	run,	implying	that	all	tasks
have	completed	and	change	detection	has	occurred.
onError	–	Notifies	when	an	error	has	occurred.	Angular	subscribes	to	this	internally	to
send	uncaught	errors	to	its	own	error	handler,	i.e.	the	errors	you	see	in	your	console
prefixed	with	'EXCEPTION:'.

To	subscribe	to	these	we	inject	NgZone	into	our	components/services/etc.	and	subscribe	to
the	public	Observables.

Zone.js

192

https://github.com/angular/zone.js
https://en.wikipedia.org/wiki/Monkey_patch

import	{	Injectable,	NgZone	}	from	'@angular/core';

@Injectable()

export	class	OurZoneWatchingService()	{

		constructor(private	ngZone:	NgZone)	{

				this.ngZone.onStable.subscribe(this.onZoneStable);

				this.ngZone.onUnstable.subscribe(this.onZoneUnstable);		

				this.ngZone.onError.subscribe(this.onZoneError);

		}

		onZoneStable()	{

				console.log('We	are	stable');

		}

		onZoneUnstable()	{

				console.log('We	are	unstable');

		}

		onZoneError(error)	{

				console.error('Error',	error	instanceof	Error	?	error.message	:	error.toString());

		}

}

Subscribing	to	these	can	help	you	determine	if	your	code	is	unexpectedly	triggering	change
detection	as	a	result	of	operations	that	do	not	affect	application	state.

Change	Detection
Since	all	asynchronous	code	executed	from	within	Angular's	zone	can	trigger	change
detection	you	may	prefer	to	execute	some	code	outside	of	Angular's	zone	when	change
detection	is	not	required.

To	run	code	outside	of	Angular's	context,	NgZone	provides	a	method	aptly	named
runOutsideAngular.	Using	this	method,	Angular's	zone	will	not	interact	with	your	code	and
will	not	receive	events	when	the	global	zone	becomes	stable.

In	this	example	you	will	see	in	the	log	what	happens	with	Angular's	zone	when	code	is	run	in
and	outside	of	it.

You	will	notice	that	in	both	cases	clicking	the	button	causes	the	Angular	zone	to	become
unstable	due	to	Zone.js	patching	and	watching	HTMLElement.prototype.onclick,	however
the	setInterval	executing	outside	of	Angular's	zone	does	not	affect	its	stability	and	does	not
trigger	change	detection.

Debugging

Zone.js

193

http://plnkr.co/edit/d3KGMh?p=preview

Generally,	exceptions	thrown	during	a	chain	of	asynchronous	events	will	only	include	the
current	method	in	their	stack	trace.

With	Zone.js	tracking	all	of	our	asynchronous	calls	it	can	provide	us	a	longer,	more	detailed,
stack	trace	of	the	events	and	calls	that	occurred	leading	up	to	our	exception.

To	enable	long	stack	traces	in	development,	you	should	include	the	long-stack-trace-zone
module	in	your	code.	It	is	a	good	idea	not	to	include	this	in	your	production	build	but	Angular
will	skip	setting	up	longer	stack	traces	when	in	production	mode	(enableProdMode		from
	@angular/core).

Angular	will	take	care	of	forking	and	extending	its	own	zone	to	display	more	meaningful
stack	traces.

if	(__PRODUCTION__)	{

		enableProdMode();

}	else	{

		require('zone.js/dist/long-stack-trace-zone');

}

With	the	following	code,	we	start	by	calling		startAsync		which	triggers	a	chain	of
setTimeouts	leading	up	to	an	uncaught	error.

function	startAsync()	{

		setTimeout(stepOne,	100);

}

function	stepOne()	{

		setTimeout(stepTwo,	100);

}

function	stepTwo()	{

		throw	new	Error('Finished');

}

Simple	Stack	trace

This	is	a	typical	stack	trace	that	you	would	see	in	this	scenario,	without	Zone,	showing	only
the	function	where	the	unhandled	exception	occurred.

Uncaught	Error:	Finished(…)

		stepTwo	@	debugging.html:28

Detailed	"Long"	Stack	trace

Zone.js

194

In	the	stack	trace	below,	you	can	see	the	order	of	events	that	occurred	within	this
asynchronous	chain	of	function	calls,	'>>'	has	been	added	to	point	out	our	functions.

You'll	notice	this	stack	trace	includes	much	more	information,	including	Zone's	own	task
management	(e.g.		onScheduleTask),	as	well	as	the	time	that	elapsed	between	when	the
function	was	queued	and	when	it	was	executed.

Having	this	longer	stack	trace	may	aide	you	with	debugging	which	feature	of	Angular	your
code	is	interacting	with	asynchronously	and	help	you	narrow	down	where	your	problem	is
occuring.

debugging.html:16	Error:	Finished

>>		at	stepTwo	(http://localhost:3030/examples/debugging.html:28:15)

				at	ZoneDelegate.invokeTask	(http://localhost:3030/node_modules/zone.js/dist/zone.j

s:265:35)

				at	Zone.runTask	(http://localhost:3030/node_modules/zone.js/dist/zone.js:154:47)

				at	ZoneTask.invoke	(http://localhost:3030/node_modules/zone.js/dist/zone.js:335:33

)

				at	data.args.(anonymous	function)	(http://localhost:3030/node_modules/zone.js/dist

/zone.js:970:25)

		-------------			Elapsed:	101	ms;	At:	Wed	Nov	16	2016	08:23:17	GMT-0500	(EST)			-----

				at	Object.onScheduleTask	(http://localhost:3030/node_modules/zone.js/dist/long-sta

ck-trace-zone.js:83:18)

				at	ZoneDelegate.scheduleTask	(http://localhost:3030/node_modules/zone.js/dist/zone

.js:242:49)

				at	Zone.scheduleMacroTask	(http://localhost:3030/node_modules/zone.js/dist/zone.js

:171:39)

				at	http://localhost:3030/node_modules/zone.js/dist/zone.js:991:33

				at	setTimeout	(eval	at	createNamedFn	(http://localhost:3030/node_modules/zone.js/d

ist/zone.js:927:17),	<anonymous>:3:37)

>>		at	stepOne	(http://localhost:3030/examples/debugging.html:23:9)

				at	ZoneDelegate.invokeTask	(http://localhost:3030/node_modules/zone.js/dist/zone.j

s:265:35)

				at	Zone.runTask	(http://localhost:3030/node_modules/zone.js/dist/zone.js:154:47)

		-------------			Elapsed:	105	ms;	At:	Wed	Nov	16	2016	08:23:17	GMT-0500	(EST)			-----

				at	Object.onScheduleTask	(http://localhost:3030/node_modules/zone.js/dist/long-sta

ck-trace-zone.js:83:18)

				at	ZoneDelegate.scheduleTask	(http://localhost:3030/node_modules/zone.js/dist/zone

.js:242:49)

				at	Zone.scheduleMacroTask	(http://localhost:3030/node_modules/zone.js/dist/zone.js

:171:39)

				at	http://localhost:3030/node_modules/zone.js/dist/zone.js:991:33

				at	setTimeout	(eval	at	createNamedFn	(http://localhost:3030/node_modules/zone.js/d

ist/zone.js:927:17),	<anonymous>:3:37)

>>		at	startAsync	(http://localhost:3030/examples/debugging.html:33:9)

				at	ZoneDelegate.invoke	(http://localhost:3030/node_modules/zone.js/dist/zone.js:23

2:26)

				at	Zone.run	(http://localhost:3030/node_modules/zone.js/dist/zone.js:114:43)

Zone.js

195

Zone.js

196

Advanced	Angular
Angular	gives	us	access	to	most	of	the	core	entities	it	uses	in	its	architecture.	Now	that	we
understand	the	different	parts	involved	in	an	Angular	application,	let's	dig	deeper	into	some
of	these	entities	and	take	advantage	of	what	we	know.

Advanced	Angular

197

Angular	Directives
Angular	built-in	directives	cover	a	broad	range	of	functionality,	but	sometimes	creating	our
own	directives	will	result	in	more	elegant	solutions.

Directives

198

Creating	an	Attribute	Directive
Let's	start	with	a	simple	button	that	moves	a	user	to	a	different	page.

@Component({

		selector:	'app-visit-rangle',

		template:	`

				<button

						type="button"

						(click)="visitRangle()">

						Visit	Rangle

				</button>

		`

})

export	class	VisitRangleComponent	{

		visitRangle()	{

				location.href	=	'https://rangle.io';

		}

}

View	Example

We're	polite,	so	rather	than	just	sending	the	user	to	a	new	page,	we're	going	to	ask	if	they're
ok	with	that	first	by	creating	an	attribute	directive	and	attaching	that	to	the	button.

@Directive({

		selector:	`[appConfirm]`

})

export	class	ConfirmDirective	{

		@HostListener('click',	['$event'])

		confirmFirst(event:	Event)	{

				return	window.confirm('Are	you	sure	you	want	to	do	this?');

		}

}

View	Example

Directives	are	created	by	using	the		@Directive		decorator	on	a	class	and	specifying	a
selector.	For	directives,	the	selector	name	must	be	camelCase	and	wrapped	in	square
brackets	to	specify	that	it	is	an	attribute	binding.	We're	using	the		@HostListener		decorator	to
listen	in	on	events	on	the	component	or	element	it's	attached	to.	In	this	case	we're	watching
the		click		event	and	passing	in	the	event	details	which	are	given	by	the	special		$event	
keyword.	Next,	we	want	to	attach	this	directive	to	the	button	we	created	earlier.

Creating	an	Attribute	Directive

199

https://plnkr.co/edit/9ANDvP9C1p2jSZW2s4LX?p=preview
https://plnkr.co/edit/KMfnzrmSx0ywKp6ztaNN?p=preview

template:	`

		<button

				type="button"

				(click)="visitRangle()"

				appConfirm>

				Visit	Rangle

		</button>

`

View	Example

Notice,	however,	that	the	button	doesn't	work	quite	as	expected.	That's	because	while	we're
listening	to	the	click	event	and	showing	a	confirm	dialog,	the	component's	click	handler	runs
before	the	directive's	click	handler	and	there's	no	communication	between	the	two.	To	do
this	we'll	need	to	rewrite	our	directive	to	work	with	the	component's	click	handler.

@Directive({

		selector:	`[appConfirm]`

})

export	class	ConfirmDirective	{

		@Input()	appConfirm	=	()	=>	{};

		@HostListener('click',	['$event'])

		confirmFirst()	{

				const	confirmed	=	window.confirm('Are	you	sure	you	want	to	do	this?');

				if(confirmed)	{

						this.appConfirm();

				}

		}

}

View	Example

Here,	we	want	to	specify	what	action	needs	to	happen	after	a	confirm	dialog's	been	sent	out
and	to	do	this	we	create	an	input	binding	just	like	we	would	on	a	component.	We'll	use	our
directive	name	for	this	binding	and	our	component	code	changes	like	this:

		<button

				type="button"

				[appConfirm]="visitRangle">

				Visit	Rangle

		</button>

View	Example

Creating	an	Attribute	Directive

200

https://plnkr.co/edit/KMfnzrmSx0ywKp6ztaNN?p=preview
https://plnkr.co/edit/OBuN06R0hmcnpGu01Z7I?p=preview
https://plnkr.co/edit/OBuN06R0hmcnpGu01Z7I?p=preview

Now	our	button	works	just	as	we	expected.	We	might	want	to	be	able	to	customize	the
message	of	the	confirm	dialog	however.	To	do	this	we'll	use	another	binding.

@Directive({

		selector:	`[appConfirm]`

})

export	class	ConfirmDirective	{

		@Input()	appConfirm	=	()	=>	{};

		@Input()	confirmMessage	=	'Are	you	sure	you	want	to	do	this?';

		@HostListener('click',	['$event'])

		confirmFirst()	{

				const	confirmed	=	window.confirm(this.confirmMessage);

				if(confirmed)	{

						this.appConfirm();

				}

		}

}

View	Example

Our	directive	gets	a	new	input	property	that	represents	the	confirm	dialog	message,	which
we	pass	in	to		window.confirm		call.	To	take	advantage	of	this	new	input	property,	we	add
another	binding	to	our	button.

<button

		type="button"

		[appConfirm]="visitRangle"

		confirmMessage="Click	ok	to	visit	Rangle.io!">

		Visit	Rangle

</button>

View	Example

Now	we	have	a	button	with	a	customizable	confirm	message	before	it	moves	you	to	a	new
url.

Creating	an	Attribute	Directive

201

https://plnkr.co/edit/S8pkKyrdF4jB7HlVQ76n?p=preview
https://plnkr.co/edit/S8pkKyrdF4jB7HlVQ76n?p=preview

Listening	to	an	Element	Host
Listening	to	the	host	-	that	is,	the	DOM	element	the	directive	is	attached	to	-	is	among	the
primary	ways	directives	extend	the	component	or	element's	behavior.	Previously,	we	saw	its
common	use	case.

@Directive({

		selector:	'[appMyDirective]'

})

class	MyDirective	{

		@HostListener('click',	['$event'])

		onClick()	{}

}

We	can	also	respond	to	external	events,	such	as	from		window		or		document	,	by	adding	the
target	in	the	listener.

@Directive({

		selector:	`[appHighlight]`

})

export	class	HighlightDirective	{

		constructor(private	el:	ElementRef,	private	renderer:	Renderer)	{	}

		@HostListener('document:click',	['$event'])

		handleClick(event:	Event)	{

				if	(this.el.nativeElement.contains(event.target))	{

						this.highlight('yellow');

				}	else	{

						this.highlight(null);

				}

		}

		highlight(color)	{

				this.renderer.setElementStyle(this.el.nativeElement,	'backgroundColor',	color);

		}

}

View	Example

Although	less	common,	we	can	also	use		@HostListener		if	we'd	like	to	register	listeners
on	the	host	element	of	a	Component.

Host	Elements

Creating	an	Attribute	Directive

202

https://plnkr.co/edit/iJvMpPYDQmiwqvUTKSU8?p=preview

The	concept	of	a	host	element	applies	to	both	directives	and	components.

For	a	directive,	the	concept	is	fairly	straight	forward.	Whichever	template	tag	you	place	your
directive	attribute	on	is	considered	the	host	element.	If	we	were	implementing	the
	HighlightDirective		above	like	so:

<div>

		<p	appHighlight>

				Text	to	be	highlighted

		</p>

</div>

The		<p>		tag	would	be	considered	the	host	element.	If	we	were	using	a	custom
	TextBoxComponent		as	the	host,	the	code	would	look	like	this:

<div>

		<app-my-text-box	appHighlight>

				Text	to	be	highlighted

		</app-my-text-box>

</div>

In	the	context	of	a	Component,	the	host	element	is	the	tag	that	you	create	through	the
	selector		string	in	the	component	configuration.	For	the		TextBoxComponent		in	the	example
above,	the	host	element	in	the	context	of	the	component	class	would	be	the		<app-my-text-
box>		tag.

Creating	an	Attribute	Directive

203

Setting	Properties	with	a	Directive
We	can	use	attribute	directives	to	affect	the	value	of	properties	on	the	host	node	by	using
the		@HostBinding		decorator.

The		@HostBinding		decorator	allows	us	to	programatically	set	a	property	value	on	the
directive's	host	element.	It	works	similarly	to	a	property	binding	defined	in	a	template,	except
it	specifically	targets	the	host	element.	The	binding	is	checked	for	every	change	detection
cycle,	so	it	can	change	dynamically	if	desired.

For	example,	lets	say	that	we	want	to	create	a	directive	for	buttons	that	dynamically	adds	a
class	when	we	press	on	it.	That	could	look	something	like:

import	{	Directive,	HostBinding,	HostListener	}	from	'@angular/core';

@Directive({

		selector:	'[appButtonPress]'

})

export	class	ButtonPressDirective	{

		@HostBinding('attr.role')	role	=	'button';

		@HostBinding('class.pressed')	isPressed:	boolean;

		@HostListener('mousedown')	hasPressed()	{

				this.isPressed	=	true;

		}

		@HostListener('mouseup')	hasReleased()	{

				this.isPressed	=	false;

		}

}

Notice	that	for	both	use	cases	of		@HostBinding		we	are	passing	in	a	string	value	for	which
property	we	want	to	affect.	If	we	don't	supply	a	string	to	the	decorator,	then	the	name	of	the
class	member	will	be	used	instead.

In	the	first		@HostBinding	,	we	are	statically	setting	the	role	attribute	to		button	.	For	the
second	example,	the		pressed		class	will	be	applied	when		isPressed		is	true.

Tip:	Though	less	common,		@HostBinding		can	also	be	applied	to	Components	if
required.

Creating	an	Attribute	Directive

204

Creating	a	Structural	Directive
We'll	create	an		appDelay		structural	directive	that	delays	instantiation	of	a	component	or
element.	This	can	potentially	be	used	for	cosmetic	effect	or	for	manually	handling	timing	of
when	components	are	loaded,	either	for	performance	or	UX.

@Directive({

		selector:	'[appDelay]'

})

export	class	DelayDirective	{

		constructor(

				private	templateRef:	TemplateRef<any>,

				private	viewContainerRef:	ViewContainerRef

)	{	}

		@Input()

		set	appDelay(time:	number):	void	{	}

}

View	Example

We	use	the	same		@Directive		class	decorator	as	attribute	directives	and	define	a	selector	in
the	same	way.	One	big	difference	here	is	that	due	to	the	nature	of	structural	directives	being
bound	to	a	template,	we	have	access	to		TemplateRef	,	an	object	representing	the		template	
tag	the	directive	is	attached	to.	We	also	add	an	input	property	in	a	similar	way,	but	this	time
with	a		set		handler	so	we	can	execute	some	code	when	Angular	performs	the	binding.	We
bind		delay		in	exactly	the	same	way	as	the	Angular	built-in	structural	directives.

@Component({

		selector:	'app-root',

		template:	`

				<div	*ngFor="let	item	of	[1,2,3,4,5,6]">

						<card	*appDelay="500	*	item">

								{{item}}

						</card>

				</div>

		`

})

export	class	AppComponent	{

}

View	Example

Creating	a	Structural	Directive

205

https://plnkr.co/edit/80AGn8bR4CiyH0ceP8ws?p=preview
https://plnkr.co/edit/80AGn8bR4CiyH0ceP8ws?p=preview

Notice	that	no	content	is	being	rendered	however.	This	is	due	to	Angular	simulating	the	html
	template		tag	and	not	rendering	any	child	elements	by	default.	To	be	able	to	get	this	content
to	render,	we'll	have	to	attach	the	template	given	by		TemplateRef		as	an	embedded	view	to	a
view	container.

Creating	a	Structural	Directive

206

View	Containers	and	Embedded	Views
View	Containers	are	containers	where	one	or	more	Views	can	be	attached.	Views	represent
some	sort	of	layout	to	be	rendered	and	the	context	under	which	to	render	it.	View	containers
are	anchored	to	components	and	are	responsible	for	generating	its	output	so	this	means	that
changing	which	views	are	attached	to	the	view	container	affect	the	final	rendered	output	of
the	component.

Two	types	of	views	can	be	attached	to	a	view	container:	Host	Views	which	are	linked	to	a
Component,	and	Embedded	Views	which	are	linked	to	a	template.	Since	structural	directives
interact	with	templates,	we	are	interested	in	using	Embedded	Views	in	this	case.

import	{	Directive,	Input,	TemplateRef,	ViewContainerRef	}	from	'@angular/core';

@Directive({

		selector:	'[appDelay]'

})

export	class	DelayDirective	{

		constructor(

				private	templateRef:	TemplateRef<any>,

				private	viewContainerRef:	ViewContainerRef

)	{	}

		@Input()

		set	appDelay(time:	number):	void	{

				setTimeout(

						()	=>	{

								this.viewContainerRef.createEmbeddedView(this.templateRef);

						},

						time);

		}

}

View	Example

Directives	get	access	to	the	view	container	by	injecting	a		ViewContainerRef	.	Embedded
views	are	created	and	attached	to	a	view	container	by	calling	the		ViewContainerRef	's
	createEmbeddedView		method	and	passing	in	the	template.	We	want	to	use	the	template	our
directive	is	attached	to	so	we	pass	in	the	injected		TemplateRef	.

Creating	a	Structural	Directive

207

https://plnkr.co/edit/UIyFaG6VyHeeGlCKM76L?p=preview

Providing	Context	Variables	to	Directives
Suppose	we	want	to	record	some	metadata	on	how	our	directive	affected	components	and
make	this	data	available	to	them.	For	example,	in	our		appDelay		directive,	we're	making	a
	setTimeout		call,	which	in	JavaScript's	single-threaded	asynchronous	model	means	that	it
may	not	run	after	the	exact	time	we	provided.	We'll	capture	the	exact	time	it	loads	and	make
that	variable	available	in	the	template.

export	class	DelayContext	{

		constructor(private	loadTime:	number)	{	}

}

@Directive({

		selector:	'[appDelay]'

})

export	class	DelayDirective	{

		constructor(

				private	templateRef:	TemplateRef<DelayContext>,

				private	viewContainerRef:	ViewContainerRef

)	{	}

		@Input()

		set	appDelay(time:	number):	void	{

				setTimeout(

						()	=>	{

								this.viewContainerRef.createEmbeddedView(

										this.templateRef,

										new	DelayContext(performance.now())

);

						},

						time);

		}

}

View	Example

We've	made	a	few	changes	to	our		appDelay		directive.	We've	created	a	new		DelayContext	
class	that	contains	the	context	that	we	want	to	provide	to	our	directive.	In	this	case,	we	want
to	capture	the	actual	time	the		createEmbeddedView		call	occurs	and	make	that	available	as
	loadTime		in	our	directive.	We've	also	provided	our	new	class	as	the	generic	argument	to
the		TemplateRef		function.	This	enables	static	analysis	and	lets	us	make	sure	our	calls	to
	createEmbeddedView		pass	in	a	variable	of	type		DelayContext	.	In	our		createEmbeddedView	
call	we	pass	in	our	variable	which	has	captured	the	time	of	the	method	call.

Creating	a	Structural	Directive

208

https://plnkr.co/edit/GmjxiDSbv78zbBFqw8yv?p=preview

In	the	component	using		appDelay	,	we	access	the		loadTime		context	variable	in	the	same
way	we	access	variables	in		ngFor	.

@Component({

		selector:	'app-root',

		template:	`

				<div	*ngFor="let	item	of	[1,2,3,4,5,6]">

						<card	*delay="500	*	item;	let	loaded	=	loadTime">

								<div	class="main">{{item}}</div>

								<div	class="sub">{{loaded	|	number:'1.4-4'}}</div>

						</card>

				</div>

		`

})

View	Example

Creating	a	Structural	Directive

209

https://plnkr.co/edit/pSv4JsGhxxwzJOh9qSNj?p=preview

AoT	in	Angular
Every	Angular	application	requires	a	compilation	process	before	they	can	run	in	the	browser:
the	enriched	components	and	templates	provided	by	Angular	cannot	be	understood	by	the
browser	directly.	During	the	compilation,	Angular's	compiler	also	improves	the	app	run-time
performance	by	taking	JavaScript	VM's	feature	(like	inline	caching)	into	consideration.

The	initial	compiler	in	Angular	1.x	and	Angular	2	is	called	JiT	(Just-in-Time)	compiler.	As	for
AoT,	it	stands	for	the	Ahead-of-Time	compiler	that	was	recently	introduced	in	Angular.
Compared	to	the	JiT	compilation	performed	by	Angular	at	run-time,	AoT	provides	a	smaller
bundle	with	faster	rendering	in	the	browser.	Using	AoT,	we	can	reduce	the	angular2-starter
to	428.8	kb	compared	to	the	original	1.2	MB	and	reduce	loading	times	by	skipping
compilation	in	the	browser.

Characteristic JiT AoT

Compilation	target Browser Server

Compilation	context Runtime Build

Bundle	size Huge	(~1.2	MB) Smaller	(~400	KB)

Execution	Performance - Better

Startup	time - Shorter

The	gist	of	AoT	is	moving	the	compilation	from	run-time	to	the	building	process.	That	means,
first	we	can	remove	the	JiT	compiler	(which	is	around	523kb)	from	the	bundle	to	have	a
smaller	build,	and	second,	the	browser	can	execute	the	code	without	waiting	for	JiT	in	the
run-time	which	leads	to	a	faster	rendering	speed.

Early	compilation	also	means	that	developers	can	find	template	bugs	without	actually
running	the	code	and	before	it	reaches	to	client.	This	provides	a	more	robust	application	with
higher	security	because	less	client-side	HTML	and	JavaScript	are		eval	ed.	Also,	by
introducing	compiled	code	in	the	building	process,	AoT	makes	the	application	more	tree-
shakable	and	open	to	various	other	optimizations.	Bundlers	like	Rollup	and	Google	Closure
can	take	that	advantage	and	effectively	decrease	the	bundle	size.

Besides,	AoT	compiler	also	inlines	HTML	templates	and	CSS	files	and	help	reduce	the
amount	of	asynchronous	requests	sent	by	the	application.	(Note:	this	caused	a	config	bug
that	we	will	mention	in	a	latter	section)

AoT

210

https://github.com/rangle/angular2-starter/pull/149

AoT

211

AoT	limitations
However,	AoT	is	not	perfect.	The	main	limitation	is	that	AoT,	due	to	the	way	it	compiles	the
raw	code,	cannot	be	used	with	common	code	patterns,	for	example,	default	exports	from
modules,	template	literals	for	templates,	and	functions	in	providers,	routes,	or	declarations.
Currently,	we	do	not	have	a	complete	list	of	"AoT	Do's	and	Don'ts"	and	the	Angular	team	has
not	released	anything	regarding	this	issue.	Rangle	made	its	own	list	here	and	also	provides
a	sandbox	for	testing	features	with	AoT.

Another	problem	with	AoT	is	that	when	the	application	reaches	certain	complexity,	the	AoT
bundle	compared	to	JiT	bundle	can	actually	takes	up	more	space.	As	an	trade-off	of	having
a	simpler	logic	for	browser	(therefore	faster	rendering	speed),	the	code	generated	by	AoT	is
actually	more	verbose	compared	to	"dynamic"	JiT.

AoT	limitations

212

https://github.com/rangle/angular-2-aot-sandbox

AoT	Configuration
To	enable	AoT	in	Angular,	there	are	two	possible	methods:

using		ngc		directly
using		@ngtools/webpack	

We	recommend	the	second	way	because	it	fits	the	Angular	+	Webpack	toolchain	the	best.
One	problem	of	using	raw		ngc		is	that		ngc		tries	to	inline	CSS	while	lacking	necessary
context.	For	example,	the		@import	'basscss-basic'		statement	in		index.css		would	cause
an	error	like		Error:	Compilation	failed.	Resource	file	not	found		with		ngc	.	It	lacks	the
information	that		'basscss-basic'		is	actually	a	node	module	inside		node_modules	.	On	the
other	hand,		@ngtools/webpack		provides		AotPlugin		and	loader	for	Webpack	which	shares
the	context	with	other	loaders/plugins.	So	when		ngc		is	called	by		@ngtools/webpack	,	it	can
gather	necessary	informations	from	other	plugins	like		postcss-import		to	correctly
understand	things	like		@import	'basscss-basic'	.

Config		@ngtools/webpack	
First,	get		@ngtools/webpack		from		npm		and	save	it	as	a	development	dependency:

npm	install	-D	@ngtools/webpack

Then,	inside	the	Webpack	configuration	file	(usually	named	as		webpack.config.js),	add
following	code:

AoT	Configuration

213

import	{AotPlugin}	from	'@ngtools/webpack'

exports	=	{	/*	...	*/

		module:	{

				rules:	[

						{

								test:	/\.ts$/,

								loader:	'@ngtools/webpack',

						}

]

		},

		plugins:	[

				new	AotPlugin({

						tsConfigPath:	'path/to/tsconfig.json',

						entryModule:	'path/to/app.module#AppModule'

				})

]

}

Here		@ngtools/webpack		replaces	other	typescript	loader	like		ts-loader		or		awesome-
typescript-loader	.	It	works	with		AotPlugin		together	to	enable	AoT	compilation.	More
details	can	be	found	here.

(Note,	for	project	generated	by		angular-cli	,	turning	on	AoT	can	be	simple	as		ng	build	--
aot	,	but	since	angular-cli	does	not	allow	customized	webpack	configuration	for	complex	use
cases,	it	may	be	insufficient.)

AoT	Configuration

214

https://github.com/angular/angular-cli/tree/master/packages/webpack

Immutable.js
Immutable.js	is	a	library	that	provides	immutable	generic	collections.

Figure:	Ayers	Rock	Uluru	by	Stefanoka	is	licensed	under	CC	BY-SA	3.0
(https://commons.wikimedia.org/wiki/File:Ayers_Rock_Uluru.jpg)

Immutable.js

215

https://facebook.github.io/immutable-js/

What	is	Immutability?
Immutability	is	a	design	pattern	where	something	can't	be	modified	after	being	instantiated.
If	we	want	to	change	the	value	of	that	thing,	we	must	recreate	it	with	the	new	value	instead.
Some	JavaScript	types	are	immutable	and	some	are	mutable,	meaning	their	value	can
change	without	having	to	recreate	it.	Let's	explain	this	difference	with	some	examples:

let	movie	=	{

		name:	'Star	Wars',

		episode:	7

};

let	myEp	=	movie.episode;

movie.episode	=	8;

console.log(myEp);	//	outputs	7

As	you	can	see	in	this	case,	although	we	changed	the	value	of		movie.episode	,	the	value	of
	myEp		didn't	change.	That's	because		movie.episode	's	type,		number	,	is	immutable.

let	movie1	=	{

		name:	'Star	Wars',

		episode:	7

};

let	movie2	=	movie1;

movie2.episode	=	8;

console.log(movie1.episode);	//	outputs	8

In	this	case	however,	changing	the	value	of	episode	on	one	object	also	changed	the	value	of
the	other.	That's	because		movie1		and		movie2		are	of	the	Object	type,	and	Objects	are
mutable.

Of	the	JavaScript	built-in	types,	the	following	are	immutable:

Boolean
Number
String
Symbol
Null

What	is	Immutability?

216

Undefined

And	the	following	are	mutable:

Object
Array
Function

String's	an	unusual	case,	since	it	can	be	iterated	over	using	for...of	and	provides	numeric
indexers	just	like	an	array,	but	doing	something	like:

let	message	=	'Hello	world';

message[5]	=	'-';

console.log(message);	//	writes	Hello	world

This	will	throw	an	error	in	strict	mode	and	fail	silently	in	non-strict	mode.

What	is	Immutability?

217

The	Case	for	Immutability
One	of	the	more	difficult	things	to	manage	when	structuring	an	application	is	managing	its
state.	This	is	especially	true	when	your	application	can	execute	code	asynchronously.	Let's
say	you	execute	some	piece	of	code,	but	something	causes	it	to	wait	(such	as	an	HTTP
request	or	user	input).	After	it's	completed,	you	notice	the	state	it's	expecting	changed
because	some	other	piece	of	code	executed	asynchronously	and	changed	its	value.

Dealing	with	that	kind	of	behavior	on	a	small	scale	might	be	manageable,	but	this	can	show
up	all	over	an	application	and	can	be	a	real	headache	as	the	application	gets	bigger	with
more	interactions	and	more	complex	logic.

Immutability	attempts	to	solve	this	by	making	sure	that	any	object	referenced	in	one	part	of
the	code	can't	be	changed	by	another	part	of	the	code	unless	they	have	the	ability	to	rebind
it	directly.

The	Case	for	Immutability

218

JavaScript	Solutions
Some	new	features	have	been	added	in	ES6	that	allow	for	easier	implementation	of
immutable	data	patterns.

JavaScript	Solutions

219

Object.assign
	Object.assign		lets	us	merge	one	object's	properties	into	another,	replacing	values	of
properties	with	matching	names.	We	can	use	this	to	copy	an	object's	values	without	altering
the	existing	one.

let	movie1	=	{

		name:	'Star	Wars',

		episode:	7

};

let	movie2	=	Object.assign({},	movie1);

movie2.episode	=	8;

console.log(movie1.episode);	//	writes	7

console.log(movie2.episode);	//	writes	8

As	you	can	see,	although	we	have	some	way	of	copying	an	object,	we	haven't	made	it
immutable,	since	we	were	able	to	set	the	episode's	property	to	8.	Also,	how	do	we	modify
the	episode	property	in	this	case?	We	do	that	through	the	assign	call:

let	movie1	=	{

		name:	'Star	Wars',

		episode:	7

};

let	movie2	=	Object.assign({},	movie1,	{	episode:	8	});

console.log(movie1.episode);	//	writes	7

console.log(movie2.episode);	//	writes	8

Object.assign

220

Object.freeze
	Object.freeze		allows	us	to	disable	object	mutation.

let	movie1	=	{

		name:	'Star	Wars',

		episode:	7

};

let	movie2	=	Object.freeze(Object.assign({},	movie1));

movie2.episode	=	8;	//	fails	silently	in	non-strict	mode,

																				//	throws	error	in	strict	mode

console.log(movie1.episode);	//	writes	7

console.log(movie2.episode);	//	writes	7

One	problem	with	this	pattern,	however,	is	how	much	more	verbose	our	code	is	and	how
difficult	it	is	to	read	and	understand	what's	actually	going	on	with	our	data	with	all	of	the
boilerplate	calls	to		Object.freeze		and		Object.assign	.	We	need	some	more	sensible
interface	to	create	and	interact	with	immutable	data,	and	that's	where	Immutable.js	fits	in.

	Object.freeze		is	also	very	slow	and	should	not	be	used	with	large	arrays.

Object.freeze

221

Immutable.js	Basics
To	solve	our	mutability	problem,	Immutable.js	must	provide	immutable	versions	of	the	two
core	mutable	types,	Object	and	Array.

Immutable.js	Basics

222

Immutable.Map
	Map		is	the	immutable	version	of	JavaScript's	object	structure.	Due	to	JavaScript	objects
having	the	concise	object	literal	syntax,	it's	often	used	as	a	key-value	store	with		key		being
type		string	.	This	pattern	closely	follows	the	map	data	structure.	Let's	revisit	the	previous
example,	but	use		Immutable.Map		instead.

import	*	as	Immutable	from	'immutable';

let	movie1	=	Immutable.Map<string,	any>({

		name:	'Star	Wars',

		episode:	7

});

let	movie2	=	movie1;

movie2	=	movie2.set('episode',	8);

console.log(movie1.get('episode'));	//	writes	7

console.log(movie2.get('episode'));	//	writes	8

Instead	of	binding	the	object	literal	directly	to		movie1	,	we	pass	it	as	an	argument	to
	Immutable.Map	.	This	changes	how	we	interact	with	movie1's	properties.

To	get	the	value	of	a	property,	we	call	the		get		method,	passing	the	property	name	we	want,
like	how	we'd	use	an	object's	string	indexer.

To	set	the	value	of	a	property,	we	call	the		set		method,	passing	the	property	name	and	the
new	value.	Note	that	it	won't	mutate	the	existing	Map	object	-	it	returns	a	new	object	with	the
updated	property,	so	we	must	rebind	the		movie2		variable	to	the	new	object.

Immutable.Map

223

Map.merge
Sometimes	we	want	to	update	multiple	properties.	We	can	do	this	using	the		merge		method.

let	baseButton	=	Immutable.Map<string,	any>({

		text:	'Click	me!',

		state:	'inactive',

		width:	200,

		height:	30

});

let	submitButton	=	baseButton.merge({

		text:	'Submit',

		state:	'active'

});

console.log(submitButton);

//	writes	{	text:	'Submit',	state:	'active',	width:	200,	height:	30	}

Immutable.Map

224

Nested	Objects
	Immutable.Map		wraps	objects	shallowly,	meaning	if	you	have	an	object	with	properties
bound	to	mutable	types	then	those	properties	can	be	mutated.

let	movie	=	Immutable.Map({

				name:	'Star	Wars',

				episode:	7,

				actors:	[

								{	name:	'Daisy	Ridley',	character:	'Rey'},

								{	name:	'Harrison	Ford',	character:	'Han	Solo'	}

],

				mpaa:	{

								rating:	'PG-13',

								reason:	'sci-fi	action	violence'

				}

});

movie.get('actors').pop();

movie.get('mpaa').rating	=	'PG';

console.log(movie.toObject());

/*	writes

{	name:	'Star	Wars',

		episode:	7,

		actors:	[{	name:	'Daisy	Ridley',	character:	'Rey'	}],

		mpaa:	{	rating:	'PG',	reason:	'sci-fi	action	violence'	}	}

		*/

To	avoid	this	issue,	use		Immutable.fromJS		instead.

Nested	Objects

225

let	movie	=	Immutable.fromJS({

				name:	'Star	Wars',

				episode:	7,

				actors:	[

								{	name:	'Daisy	Ridley',	character:	'Rey'},

								{	name:	'Harrison	Ford',	character:	'Han	Solo'	}

],

				mpaa:	{

								rating:	'PG-13',

								reason:	'sci-fi	action	violence'

				}

});

movie.get('actors').pop();

movie.get('mpaa').rating	=	'PG';

console.log(movie.toObject());

/*	writes

{	name:	'Star	Wars',

		episode:	7,

		actors:	List	[Map	{	"name":	"Daisy	Ridley",	"character":	"Rey"	},	Map	{	"name":	"Ha

rrison	Ford",	"character":	"Han	Solo"	}],

		mpaa:	Map	{	"rating":	"PG-13",	"reason":	"sci-fi	action	violence"	}	}

*/

So	let's	say	you	want	to	modify		movie.mpaa.rating	.	You	might	think	of	doing	something	like
this:		movie	=	movie.get('mpaa').set('rating',	'PG')	.	However,		set		will	always	return	the
calling	Map	instance,	which	in	this	case	returns	the	Map	bound	to	the		mpaa		key	rather	than
the	movie	you	wanted.	We	must	use	the		setIn		method	to	update	nested	properties.

Nested	Objects

226

let	movie	=	Immutable.fromJS({

				name:	'Star	Wars',

				episode:	7,

				actors:	[

								{	name:	'Daisy	Ridley',	character:	'Rey'},

								{	name:	'Harrison	Ford',	character:	'Han	Solo'	}

],

				mpaa:	{

								rating:	'PG-13',

								reason:	'sci-fi	action	violence'

				}

});

movie	=	movie

		.update('actors',	actors	=>	actors.pop())

		.setIn(['mpaa',	'rating'],	'PG');

console.log(movie.toObject());

/*	writes

{	name:	'Star	Wars',

		episode:	7,

		actors:	List	[Map	{	"name":	"Daisy	Ridley",	"character":	"Rey"	}],

		mpaa:	Map	{	"rating":	"PG",	"reason":	"sci-fi	action	violence"	}	}

*/

We	also	added	a	call	to		Map.update		which,	unlike		set	,	accepts	a	function	as	the	second
argument	instead	of	a	value.	This	function	accepts	the	existing	value	at	that	key	and	must
return	the	new	value	of	that	key.

Nested	Objects

227

Deleting	Keys
Keys	can	be	deleted	from	maps	using	the		Map.delete		and		Map.deleteIn		methods.

let	movie	=	Immutable.fromJS({

				name:	'Star	Wars',

				episode:	7,

				actors:	[

								{	name:	'Daisy	Ridley',	character:	'Rey'},

								{	name:	'Harrison	Ford',	character:	'Han	Solo'	}

],

				mpaa:	{

								rating:	'PG-13',

								reason:	'sci-fi	action	violence'

				}

});

movie	=	movie.delete('mpaa');

console.log(movie.toObject());

/*	writes

{	name:	'Star	Wars',

		episode:	7,

		actors:	List	[Map	{	"name":	"Daisy	Ridley",	"character":	"Rey"	},	Map	{	"name":	"Ha

rrison	Ford",	"character":	"Han	Solo"	}]	}

*/

Nested	Objects

228

Maps	are	Iterable
Maps	in	Immutable.js	are	iterable,	meaning	that	you	can		map	,		filter	,		reduce	,	etc.	each
key-value	pair	in	the	map.

let	features	=	Immutable.Map<string,	boolean>({

				'send-links':	true,

				'send-files':	true,

				'local-storage':	true,

				'mirror-notifications':	false,

				'api-access':	false

});

let	myFeatures	=	features.reduce((providedFeatures,	provided,	feature)	=>	{

				if(provided)

								providedFeatures.push(feature);

		return	providedFeatures;

},	[]);

console.log(myFeatures);	//	['send-links',	'send-files',	'local-storage']

const	mapMap	=	Immutable.Map({	a:	0,	b:	1,	c:	2	});

mapMap.map(i	=>	i	*	30);

const	mapFilter	=	Immutable.Map({	a:	0,	b:	1,	c:	2	});

mapFilter.filter(i	=>	i	%	2);

const	mapReduce	=	Immutable.Map({	a:	10,	b:	20,	c:	30	});

mapReduce.reduce((acc,	i)	=>	acc	+	i,	0);

Nested	Objects

229

Immutable.List
	List		is	the	immutable	version	of	JavaScript's	array	structure.

let	movies	=	Immutable.fromJS([//	again	use	fromJS	for	deep	immutability

		{

				name:	'The	Fellowship	of	the	Ring',

				released:	2001,

				rating:	8.8

		},

		{

				name:	'The	Two	Towers',

				released:	2002,

				rating:	8.7

		}

]);

movies	=	movies.push(Immutable.Map({

				name:	'The	Return	of	the	King',

				released:	2003

}));

movies	=	movies.update(2,	movie	=>	movie.set('rating',	8.9));	//	0	based

movies	=	movies.zipWith(

		(movie,	seriesNumber)	=>	movie.set('episode',	seriesNumber),

		Immutable.Range(1,	movies.size	+	1)	//	size	property	instead	of	length

);

console.log(movies);

/*	writes

List	[

		Map	{	"name":	"The	Fellowship	of	the	Ring",	"released":	2001,	"rating":	8.8,	"episod

e":	1	},

		Map	{	"name":	"The	Two	Towers",	"released":	2002,	"rating":	8.7,	"episode":	2	},

		Map	{	"name":	"The	Return	of	the	King",	"released":	2003,	"rating":	8.9,	"episode":	

3	}]

		*/

Here	we	use	the		Immutable.fromJS		call	again	since	we	have	objects	stored	in	the	array.	We
call		push		to	add	items	to	the	list,	just	like	we	would	call	it	on	an	array.	But	since	we're
creating	a	new	copy,	we	must	rebind	the	variable.	We	have	the	same		set		and		update	
calls	when	we	want	to	update	items	at	specific	indexes.	We	also	have	access	to	array
functions	like		map	,		reduce		with	support	for	extras	like	the	one	we're	using	here,		zipWith	.

Immutable.List

230

Immutable.List

231

Performance	and	Transient	Changes

Performance
Immutable	data	structures	often	have	a	performance	penalty	due	to	the	costs	of	allocation
new	memory	and	copying	data.	Consider	these	two	examples,	one	which	uses	a	mutable
array	and	one	which	uses	an	Immutable.js	collection.

Mutable

const	list	=	[];

let	val	=	"";

Immutable.Range(0,	1000000)

		.forEach(function()	{

				val	+=	"concatenation";

				list.push(val);

		});

Immutable

const	init	=	{

		list:	Immutable.List(),

		val:	""

};

const	list	=	Immutable.Range(0,	1000000)

		.reduce(function(reduced)	{

				var	next	=	reduced.val	+	"concatenation";

				return	{

						list:	reduced.list.push(next),

						val:	next

				};

		},	init).list

Here	the	fully	immutable	code	runs	around	90%	slower	than	the	mutable	code!	While
immutable	data	can	make	code	much	easier	to	reason	about,	there	is	definitely	a	cost
associated	with	that	decision.	As	we	can	see	here	for	iterative	concat,	this	can	have	a	major
impact	on	usability.	Fortunately,	Immutable.js	provides	some	features	where	the
performance	costs	can	be	mitigated.

Performance	and	Transient	Changes

232

Persistent	Data	Structures	and	Transient
Changes
Immutable	data	structures	are	also	sometimes	referred	to	as	persistent	data	structures,
since	their	values	persist	for	their	lifetime.	Immutable.js	provides	the	option	for	transient
changes:	operations	during	which	an	immutable	data	structure	can	perform	mutable
changes	locally	while	returning	an	immutable	result.	This	is	one	approach	to	solving	the
performance	issues	we	encountered	earlier.	Let's	revisit	the	immutable	case	outlined	in	the
performance	example,	but	using	a	transient	data	structure	this	time:

import	*	as	Immutable	from	'immutable';

let	list	=	list.withMutations(mutableList	=>	{

		let	val	=	"";

		return	Immutable.Range(0,	1000000)

				.forEach(()	=>	{

						val	+=	"concatenation";

						mutableList.push(val);

		});

});

console.log(list.size);	//	writes	1000000

list.push('');

console.log(list.size);	//	writes	1000000

This	transient	list	builder	is	still	much	slower	than	our	fully	mutable	implementation	but	much
faster	than	our	fully	immutable	version.

Performance	and	Transient	Changes

233

Official	documentation
For	more	information	on	Immutable.js,	visit	the	official	documentation	at
https://facebook.github.io/immutable-js/.

Official	Documentation

234

https://facebook.github.io/immutable-js/

Pipes

Figure:	Pipes	by	Life-Of-Pix	is	licensed	under	Public	Domain	(https://pixabay.com/en/pipe-
plumbing-connection-pipeline-406906/)

Angular	2	provides	a	new	way	of	filtering	data:		pipes	.	Pipes	are	a	replacement	for	Angular
1.x's		filters	.	Most	of	the	built-in	filters	from	Angular	1.x	have	been	converted	to	Angular	2
pipes;	a	few	other	handy	ones	have	been	included	as	well.

Pipes

235

Using	Pipes
Like	a	filter,	a	pipe	also	takes	data	as	input	and	transforms	it	to	the	desired	output.	A	basic
example	of	using	pipes	is	shown	below:

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'product-price',

		template:	`<p>Total	price	of	product	is	{{	price	|	currency	}}</p>`

})

export	class	ProductPrice	{

		price	=	100.1234;

}

View	Example

Passing	Parameters
A	pipe	can	accept	optional	parameters	to	modify	the	output.	To	pass	parameters	to	a	pipe,
simply	add	a	colon	and	the	parameter	value	to	the	end	of	the	pipe	expression:

pipeName:	parameterValue

You	can	also	pass	multiple	parameters	this	way:

pipeName:	parameter1:	parameter2

import	{	Component	}	from	'@angular/core';

@Component({

				selector:	'app-root',

				template:	'<p>Total	price	of	product	is	{{	price	|	currency:	"CAD":	true:	"1.2-4"	

}}</p>'

})

export	class	AppComponent	{

		price	=	100.123456;

}

View	Example

Using	Pipes

236

http://plnkr.co/edit/JIdYGCz1U9ElEpCArg01?p=preview
http://plnkr.co/edit/IjGPii3n7qpezcglp03O?p=preview

Chaining	Pipes
We	can	chain	pipes	together	to	make	use	of	multiple	pipes	in	one	expression.

import	{	Component	}	from	'@angular/core';

@Component({

				selector:	'app-root',

				template:	'<p>Total	price	of	product	is	{{	price	|	currency:	"CAD":	true:	"1.2-4"	

|	lowercase	}}</p>'

})

export	class	ProductPrice	{

		price	=	100.123456;

}

View	Example

Using	Pipes

237

http://plnkr.co/edit/mnnujN8qPMfRzmNg4uo4?p=preview

Custom	Pipes
Angular	allows	you	to	create	your	own	custom	pipes:

import	{	Pipe,	PipeTransform	}	from	'@angular/core';

const	FILE_SIZE_UNITS	=	['B',	'KB',	'MB',	'GB',	'TB',	'PB',	'EB',	'ZB',	'YB'];

const	FILE_SIZE_UNITS_LONG	=	['Bytes',	'Kilobytes',	'Megabytes',	'Gigabytes',	'Pettaby

tes',	'Exabytes',	'Zettabytes',	'Yottabytes'];

@Pipe({

		name:	'formatFileSize'

})

export	class	FormatFileSizePipe	implements	PipeTransform	{

		transform(sizeInBytes:	number,	longForm:	boolean):	string	{

				const	units	=	longForm

						?	FILE_SIZE_UNITS_LONG

						:	FILE_SIZE_UNITS;

				let	power	=	Math.round(Math.log(sizeInBytes)	/	Math.log(1024));

				power	=	Math.min(power,	units.length	-	1);

				const	size	=	sizeInBytes	/	Math.pow(1024,	power);	//	size	in	new	units

				const	formattedSize	=	Math.round(size	*	100)	/	100;	//	keep	up	to	2	decimals

				const	unit	=	units[power];

				return	`${formattedSize}	${unit}`;

		}

}

Each	custom	pipe	implementation	must:

have	the		@Pipe		decorator	with	pipe	metadata	that	has	a		name		property.	This	value	will
be	used	to	call	this	pipe	in	template	expressions.	It	must	be	a	valid	JavaScript	identifier.
implement	the		PipeTransform		interface's	transform	method.	This	method	takes	the
value	being	piped	and	a	variable	number	of	arguments	of	any	type	and	return	a
transformed	("piped")	value.

Each	colon-delimited	parameter	in	the	template	maps	to	one	method	argument	in	the	same
order.

Custom	Pipes

238

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<div>

						<p	*ngFor="let	f	of	fileSizes">{{	f	|	formatFileSize	}}</p>

						<p>{{	largeFileSize	|	formatFileSize:true	}}</p>

				</div>`

})

export	class	AppComponent	{

		fileSizes	=	[10,	100,	1000,	10000,	100000,	10000000,	10000000000];

		largeFileSize	=	Math.pow(10,	15)

}

View	Example

Custom	Pipes

239

http://plnkr.co/edit/XF8NRDK3f7Yt0w1eUJDK?p=preview

Stateful	Pipes
There	are	two	categories	of	pipes:

Stateless	pipes	are	pure	functions	that	flow	input	data	through	without	remembering
anything	or	causing	detectable	side-effects.	Most	pipes	are	stateless.	The
	CurrencyPipe		we	used	and	the	length	pipe	we	created	are	examples	of	a	stateless
pipe.

Stateful	pipes	are	those	which	can	manage	the	state	of	the	data	they	transform.	A	pipe
that	creates	an	HTTP	request,	stores	the	response	and	displays	the	output,	is	a	stateful
pipe.	Stateful	Pipes	should	be	used	cautiously.

Angular	provides		AsyncPipe	,	which	is	stateful.

AsyncPipe
AsyncPipe	can	receive	a		Promise		or		Observable		as	input	and	subscribe	to	the	input
automatically,	eventually	returning	the	emitted	value(s).	It	is	stateful	because	the	pipe
maintains	a	subscription	to	the	input	and	its	returned	values	depend	on	that	subscription.

@Component({

		selector:	'app-root',

		template:	`

				<p>Total	price	of	product	is	{{fetchPrice	|	async	|	currency:"CAD":true:"1.2-2"}}<

/p>

				<p>Seconds:	{{seconds	|	async}}	</p>

		`

})

export	class	AppComponent	{

		fetchPrice	=	new	Promise((resolve,	reject)	=>	{

				setTimeout(()	=>	resolve(10),	500);

		});

		seconds	=	Observable.of(0).concat(Observable.interval(1000))

}

View	Example

Implementing	Stateful	Pipes

Stateful	Pipes

240

http://plnkr.co/edit/LI2RHBfX6NVTvBeNnphR?p=preview

Pipes	are	stateless	by	default.	We	must	declare	a	pipe	to	be	stateful	by	setting	the	pure
property	of	the		@Pipe		decorator	to	false.	This	setting	tells	Angular’s	change	detection
system	to	check	the	output	of	this	pipe	each	cycle,	whether	its	input	has	changed	or	not.

//	naive	implementation	assumes	small	number	increments

@Pipe({

		name:	'animateNumber',

		pure:	false

})

export	class	AnimateNumberPipe	implements	PipeTransform	{

		private	currentNumber:	number	=	null;	//	intermediary	number

		private	targetNumber:	number	=	null;

		transform(targetNumber:	number):	string	{

				if	(targetNumber	!==	this.targetNumber)	{

						this.currentNumber	=	this.targetNumber	||	targetNumber;

						this.targetNumber	=	targetNumber;

						const	difference	=	this.targetNumber	-	this.currentNumber

						Observable.interval(100)

								.take(difference)

								.subscribe(()	=>	{

										this.currentNumber++;

								})

				}

				return	this.currentNumber;

		}

}

View	Example

Stateful	Pipes

241

http://plnkr.co/edit/HGIyhJvTrZEPtGn98QIG?p=preview

Forms
An	application	without	user	input	is	just	a	page.	Capturing	input	from	the	user	is	the
cornerstone	of	any	application.	In	many	cases,	this	means	dealing	with	forms	and	all	of	their
complexities.

Angular	2	is	much	more	flexible	than	Angular	1.x	for	handling	forms	—	we	are	no	longer
restricted	to	relying	solely	on		ngModel	.	Instead,	we	are	given	degrees	of	simplicity	and
power,	depending	on	the	form's	purpose.

Template-Driven	Forms	places	most	of	the	form	handling	logic	within	that	form's
template
Reactive	Forms	places	form	handling	logic	within	a	component's	class	properties	and
provides	interaction	through	observables

Forms

242

Getting	Started

Opt-In	APIs

Before	we	dive	into	any	of	the	form	features,	we	need	to	do	a	little	bit	of	housekeeping.	We
need	to	bootstrap	our	application	using	the		FormsModule		or		ReactiveFormsModule	.

import	{	platformBrowserDynamic	}	from	'@angular/platform-browser-dynamic'

import	{	FormsModule	}	from	'@angular/forms';

import	{	AppComponent	}	from	'./components'

@NgModule({

		imports:	[

				BrowserModule,

				FormsModule,

],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{

}

platformBrowserDynamic().bootstrapModule(AppModule)

Input	Labeling

Most	of	the	form	examples	use	the	following	HTML5	style	for	labeling	inputs:

<label	for="name">Name</label>

<input	type="text"	name="username"	id="name">

Angular	also	supports	the	alternate	HTML5	style,	which	precludes	the	necessity	of		id	s	on
	<input>	s:

<label>

		Name

		<input	type="text"	name="username">

</label>

Getting	Started

243

Template-Driven	Forms
The	most	straightforward	approach	to	building	forms	in	Angular	is	to	take	advantage	of	the
directives	provided	for	you.

First,	consider	a	typical	form:

<form	method="POST"	action="/register"	id="signup-form">

		<label	for="email">Email</label>

		<input	type="text"	name="email"	id="email">

		<label	for="password">Password</label>

		<input	type="password"	name="password"	id="password">

		<button	type="submit">Sign	Up</button>

</form>

Angular	has	already	provided	you	a		form		directive,	and	form	related	directives	such	as
input,	etc	which	operates	under	the	covers.	For	a	basic	implementation,	we	just	have	to	add
a	few	attributes	and	make	sure	our	component	knows	what	to	do	with	the	data.

index.html

<signup-form>Loading...</signup-form>

signup-form.component.html

<form	#signupForm="ngForm"	(ngSubmit)="registerUser(signupForm)">

		<label	for="email">Email</label>

		<input	type="text"	name="email"	id="email"	ngModel>

		<label	for="password">Password</label>

		<input	type="password"	name="password"	id="password"	ngModel>

		<button	type="submit">Sign	Up</button>

</form>

signup-form.component.ts

Template-Driven	Forms

244

import	{	Component	}	from	'@angular/core';

import	{	NgForm	}	from	'@angular/forms';

@Component({

		selector:	'app-signup-form',

		templateUrl:	'app/signup-form.component.html',

})

export	class	SignupFormComponent	{

		registerUser(form:	NgForm)	{

				console.log(form.value);

				//	{email:	'...',	password:	'...'}

				//	...

		}

}

Template-Driven	Forms

245

Nesting	Form	Data
If	you	find	yourself	wrestling	to	fit	nested	trees	of	data	inside	of	a	flat	form,	Angular	has	you
covered	for	both	simple	and	complex	cases.

Let's	assume	you	had	a	payment	endpoint	which	required	data,	similar	to	the	following:

{

		"contact":	{

				"firstname":	"Bob",

				"lastname":	"McKenzie",

				"email":	"BobAndDoug@GreatWhiteNorth.com",

				"phone":	"555-TAKE-OFF"

		},

		"address":	{

				"street":	"123	Some	St",

				"city":	"Toronto",

				"region":	"ON",

				"country":	"CA",

				"code":	"H0H	0H0"

		},

		"paymentCard":	{

				"provider":	"Credit	Lending	Company	Inc",

				"cardholder":	"Doug	McKenzie",

				"number":	"123	456	789	012",

				"verification":	"321",

				"expiry":	"2020-02"

		}

}

While	forms	are	flat	and	one-dimensional,	the	data	built	from	them	is	not.	This	leads	to
complex	transforms	to	convert	the	data	you’ve	been	given	into	the	shape	you	need.

Worse,	in	cases	where	it	is	possible	to	run	into	naming	collisions	in	form	inputs,	you	might
find	yourself	using	long	and	awkward	names	for	semantic	purposes.

Nesting	Form	Data

246

<form>

		<fieldset>

				<legend>Contact</legend>

				<label	for="contact_first-name">First	Name</label>

				<input	type="text"	name="contact_first-name"	id="contact_first-name">

				<label	for="contact_last-name">Last	Name</label>

				<input	type="text"	name="contact_last-name"	id="contact_last-name">

				<label	for="contact_email">Email</label>

				<input	type="email"	name="contact_email"	id="contact_email">

				<label	for="contact_phone">Phone</label>

				<input	type="text"	name="contact_phone"	id="contact_phone">

		</fieldset>

		<!--	...	-->

</form>

A	form	handler	would	have	to	convert	that	data	into	a	form	that	your	API	expects.	Thankfully,
this	is	something	Angular	has	a	solution	for.

	ngModelGroup	

When	building	a	template-driven	form	in	Angular,	we	can	lean	on	the		ngModelGroup		directive
to	arrive	at	a	cleaner	implementation,	while	Angular	does	the	heavy	lifting	of	converting
form-fields	into	nested	data.

Nesting	Form	Data

247

<form	#paymentForm="ngForm"	(ngSubmit)="purchase(paymentForm)">

		<fieldset	ngModelGroup="contact">

				<legend>Contact</legend>

				<label>

						First	Name	<input	type="text"	name="firstname"	ngModel>

				</label>

				<label>

						Last	Name	<input	type="text"	name="lastname"	ngModel>

				</label>

				<label>

						Email	<input	type="email"	name="email"	ngModel>

				</label>

				<label>

						Phone	<input	type="text"	name="phone"	ngModel>

				</label>

		</fieldset>

		<fieldset	ngModelGroup="address">

				<!--	...	-->

		</fieldset>

		<fieldset	ngModelGroup="paymentCard">

				<!--	...	-->

		</fieldset>

</form>

Using	the	alternative	HTML5	labeling	format;	IDs	have	no	bearing	on	the		ngForm		/
	ngModel		paradigm
Aside	from	semantic	purposes,		ngModelGroup		does	not	have	to	be	used	on
	<fieldset>		—	it	would	work	just	as	well	on	a		<div>	.

If	we	were	to	fill	out	the	form,	it	would	end	up	in	the	shape	we	need	for	our	API,	and	we	can
still	rely	on	the	HTML	field	validation	if	we	know	it’s	available.

Nesting	Form	Data

248

Using	Template	Model	Binding

One-Way	Binding

If	you	need	a	form	with	default	values,	you	can	start	using	the	value-binding	syntax	for
ngModel.

app/signup-form.component.html

<form	#signupForm="ngForm"	(ngSubmit)="register(signupForm)">

		<label	for="username">Username</label>

		<input	type="text"	name="username"	id="username"	[ngModel]="generatedUser">

		<label	for="email">Email</label>

		<input	type="email"	name="email"	id="email"	ngModel>

		<button	type="submit">Sign	Up</button>

</form>

app/signup-form.component.ts

import	{	Component	}	from	'@angular/core';

import	{	NgForm	}	from	'@angular/forms';

//	...

@Component({

		//	...

})

export	class	SignupFormComponent	{

		generatedUser:	string	=	generateUniqueUserID();

		register(form:	NgForm)	{

				console.log(form.value);

				//	...

		}

}

Two-Way	Binding

While	Angular	assumes	one-way	binding	by	default,	two-way	binding	is	still	available	if	you
need	it.

In	order	to	have	access	to	two-way	binding	in	template-driven	forms,	use	the	“Banana-Box”
syntax	([(ngModel)]="propertyName").

Using	Template	Model	Binding

249

Be	sure	to	declare	all	of	the	properties	you	will	need	on	the	component.

<form	#signupForm="ngForm"	(ngSubmit)="register(signupForm)">

		<label	for="username">Username</label>

		<input	type="text"	name="username"	id="username"	[(ngModel)]="username">

		<label	for="email">Email</label>

		<input	type="email"	name="email"	id="email"	[(ngModel)]="email">

		<button	type="submit">Sign	Up</button>

</form>

import	{	Component	}	from	'@angular/core';

import	{	NgForm	}	from	'@angular/forms';

@Component({

		//	...

})

export	class	SignUpFormComponent	{

		username:	string	=	generateUniqueUserID();

		email	=	'';

		register(form:	NgForm)	{

				console.log(form.value.username);

				console.log(this.username);

				//	...

		}

}

Using	Template	Model	Binding

250

Validating	Template-Driven	Forms

Validation

Using	the	template-driven	approach,	form	validation	is	a	matter	of	following	HTML5
practices:

<!--	a	required	field	-->

<input	type="text"	required>

<!--	an	optional	field	of	a	specific	length	-->

<input	type="text"	pattern=".{3,8}">

<!--	a	non-optional	field	of	specific	length	-->

<input	type="text"	pattern=".{3,8}"	required>

<!--	alphanumeric	field	of	specific	length	-->

<input	type="text"	pattern="[A-Za-z0-9]{0,5}">

Note	that	the		pattern		attribute	is	a	less-powerful	version	of	JavaScript's	RegEx	syntax.

There	are	other	HTML5	attributes	which	can	be	learned	and	applied	to	various	types	of
input;	however	in	most	cases	they	act	as	upper	and	lower	limits,	preventing	extra	information
from	being	added	or	removed.

<!--	a	field	which	will	accept	no	more	than	5	characters	-->

<input	type="text"	maxlength="5">

You	can	use	one	or	both	of	these	methods	when	writing	a	template-driven	form.	Focus	on
the	user	experience:	in	some	cases,	it	makes	sense	to	prevent	accidental	entry,	and	in
others	it	makes	sense	to	allow	unrestricted	entry	but	provide	something	like	a	counter	to
show	limitations.

Validating	Template-Driven	Forms

251

Reactive/Model-Driven	Forms
While	using	directives	in	our	templates	gives	us	the	power	of	rapid	prototyping	without	too
much	boilerplate,	we	are	restricted	in	what	we	can	do.	Reactive	forms	on	the	other	hand,
lets	us	define	our	form	through	code	and	gives	us	much	more	flexibility	and	control	over	data
validation.

There	is	a	little	bit	of	magic	in	its	simplicity	at	first,	but	after	you're	comfortable	with	the
basics,	learning	its	building	blocks	will	allow	you	to	handle	more	complex	use	cases.

Reactive/Model-Driven	Forms

252

Reactive	Forms	Basics
To	begin,	we	must	first	ensure	we	are	working	with	the	right	directives	and	the	right	classes
in	order	to	take	advantage	of	procedural	forms.	For	this,	we	need	to	ensure	that	the
	ReactiveFormsModule		was	imported	in	the	bootstrap	phase	of	the	application	module.

This	will	give	us	access	to	components,	directives	and	providers	like		FormBuilder	,
	FormGroup	,	and		FormControl	

In	our	case,	to	build	a	login	form,	we're	looking	at	something	like	the	following:

app/login-form.component.ts

import	{	Component	}	from	'@angular/core';

import	{	FormGroup,	FormControl,	FormBuilder	}	from	'@angular/forms';

@Component({

		selector:	'app-root',

		templateUrl:	'app/app.component.html'

})

export	class	AppComponent	{

		username	=	new	FormControl('')

		password	=	new	FormControl('')

		loginForm:	FormGroup	=	this.builder.group({

				username:	this.username,

				password:	this.password

		});

		constructor(private	builder:	FormBuilder)	{	}

		login()	{

				console.log(this.loginForm.value);

				//	Attempt	Logging	in...

		}

}

app/login-form.component.html

FormBuilder	Basics

253

<form	[formGroup]="loginForm"	(ngSubmit)="login()">

		<label	for="username">username</label>

		<input	type="text"	name="username"	id="username"	[formControl]="username">

		

		<label	for="password">password</label>

		<input	type="password"	name="password"	id="password"	[formControl]="password">

		

		<button	type="submit">log	in</button>

</form>

View	Example

	FormControl	

Note	that	the		FormControl		class	is	assigned	to	similarly	named	fields,	both	on		this		and	in
the		FormBuilder#group({	})		method.	This	is	mostly	for	ease	of	access.	By	saving	references
to	the		FormControl		instances	on		this	,	you	can	access	the	inputs	in	the	template	without
having	to	reference	the	form	itself.	The	form	fields	can	otherwise	be	reached	in	the	template
by	using		loginForm.controls.username		and		loginForm.controls.password	.	Likewise,	any
instance	of		FormControl		in	this	situation	can	access	its	parent	group	by	using	its		.root	
property	(e.g.		username.root.controls.password).

Make	sure	that		root		and		controls		exist	before	they're	used.

A		FormControl		requires	two	properties:	an	initial	value	and	a	list	of	validators.	Right	now,	we
have	no	validation.	This	will	be	added	in	the	next	steps.

FormBuilder	Basics

254

https://plnkr.co/edit/fsSozv?p=preview

Validating	Reactive	Forms
Building	from	the	previous	login	form,	we	can	quickly	and	easily	add	validation.

Angular	provides	many	validators	out	of	the	box.	They	can	be	imported	along	with	the	rest	of
dependencies	for	procedural	forms.

app/login-form.component.ts

import	{	Component	}	from	'@angular/core';

import	{	Validators,	FormBuilder,	FormControl	}	from	'@angular/forms';

@Component({

		//	...

})

export	class	AppComponent	{

		username	=	new	FormControl('',	[

				Validators.required,

				Validators.minLength(5)

]);

		password	=	new	FormControl('',	[Validators.required]);

		loginForm:	FormGroup	=	this.builder.group({

				username:	this.username,

				password:	this.password

		});

		constructor(private	builder:	FormBuilder)	{	}

		login	()	{

				console.log(this.loginForm.value);

				//	Attempt	Logging	in...

		}

}

app/login-form.component.html

Validating	FormBuilder	Forms

255

<form	[formGroup]="loginForm"	(ngSubmit)="login()">

		<div>

				<label	for="username">username</label>

				<input

						type="text"

						name="username"

						id="username"

						[formControl]="username">

				<div	[hidden]="username.valid	||	username.untouched">

						<div>

								The	following	problems	have	been	found	with	the	username:

						</div>

						<div	[hidden]="!username.hasError('minlength')">

								Username	can	not	be	shorter	than	5	characters.

						</div>

						<div	[hidden]="!username.hasError('required')">

								Username	is	required.

						</div>

				</div>

		</div>

		<div	>

				<label	for="password">password</label>

				<input

						type="password"

						name="password"

						id="password"	[formControl]="password">

				<div	[hidden]="password.valid	||	password.untouched">

						<div>

								The	following	problems	have	been	found	with	the	password:

						</div>

						<div	[hidden]="!password.hasError('required')">

								The	password	is	required.

						</div>

				</div>

		</div>

		<button	type="submit"	[disabled]="!loginForm.valid">Log	In</button>

</form>

Note	that	we	have	added	rather	robust	validation	on	both	the	fields	and	the	form	itself,	using
nothing	more	than	built-in	validators	and	some	template	logic.

View	Example

Validating	FormBuilder	Forms

256

https://plnkr.co/edit/TjpNF7?p=preview

We	are	using		.valid		and		.untouched		to	determine	if	we	need	to	show	errors	-	while	the
field	is	required,	there	is	no	reason	to	tell	the	user	that	the	value	is	wrong	if	the	field	hasn't
been	visited	yet.

For	built-in	validation,	we	are	calling		.hasError()		on	the	form	element,	and	we	are	passing
a	string	which	represents	the	validator	function	we	included.	The	error	message	only
displays	if	this	test	returns	true.

Validating	FormBuilder	Forms

257

Reactive	Forms	Custom	Validation
As	useful	as	the	built-in	validators	are,	it	is	very	useful	to	be	able	to	include	your	own.
Angular	allows	you	to	do	just	that,	with	minimal	effort.

Let's	assume	we	are	using	the	same	Login	Form,	but	now	we	also	want	to	test	that	our
password	has	an	exclamation	mark	somewhere	in	it.

app/login-form.component.ts

function	hasExclamationMark(input:	FormControl)	{

		const	hasExclamation	=	input.value.indexOf('!')	>=	0;

		return	hasExclamation	?	null	:	{	needsExclamation:	true	};

}

password	=	new	FormControl('',	[

		Validators.required,

		hasExclamationMark

]);

A	simple	function	takes	the		FormControl		instance	and	returns	null	if	everything	is	fine.	If	the
test	fails,	it	returns	an	object	with	an	arbitrarily	named	property.	The	property	name	is	what
will	be	used	for	the		.hasError()		test.

app/login-form.component.ts

<!--	...	-->

<div	[hidden]="!password.hasError('needsExclamation')">

		Your	password	must	have	an	exclamation	mark!

</div>

<!--	...	-->

View	Example

Predefined	Parameters

Having	a	custom	validator	to	check	for	exclamation	marks	might	be	helpful,	but	what	if	you
need	to	check	for	some	other	form	of	punctuation?	It	might	be	overkill	to	write	nearly	the
same	thing	over	and	over	again.

Consider	the	earlier	example		Validators.minLength(5)	.	How	did	they	get	away	with	allowing
an	argument	to	control	the	length,	if	a	validator	is	just	a	function?	Simple,	really.	It's	not	a
trick	of	Angular,	or	TypeScript	-	it's	simple	JavaScript	closures.

FormBuilder	Custom	Validation

258

https://plnkr.co/edit/obOPx9?p=preview

function	minLength(minimum)	{

		return	function(input)	{

				return	input.value.length	>=	minimum	?	null	:	{	minLength:	true	};

		};

}

Assume	you	have	a	function	which	takes	a	"minimum"	parameter	and	returns	another
function.	The	function	defined	and	returned	from	the	inside	becomes	the	validator.	The
closure	reference	allows	you	to	remember	the	value	of	the	minimum	when	the	validator	is
eventually	called.

Let's	apply	that	thinking	back	to	a		PunctuationValidator	.

app/login-form.component.ts

function	hasPunctuation(punctuation:	string,	errorType:	string)	{

		return	function(input:	FormControl)	{

				return	input.value.indexOf(punctuation)	>=	0	?

								null	:

								{	[errorType]:	true	};

		};

}

//	...

password	=	new	FormControl('',	[

		Validators.required,

		hasPunctuation('&',	'ampersandRequired')

]);

app/login-form.component.html

<!--	...	-->

<div	[hidden]="!password.hasError('ampersandRequired')">

		You	must	have	an	&	in	your	password.

</div>

<!--	...	-->

View	Example

Validating	Inputs	Using	Other	Inputs

Keep	in	mind	what	was	mentioned	earlier:	inputs	have	access	to	their	parent	context	via
	.root	.	Therefore,	complex	validation	can	happen	by	drilling	through	the	form,	via	root.

FormBuilder	Custom	Validation

259

https://plnkr.co/edit/2NNy4Q?p=preview

function	duplicatePassword(input:	FormControl)	{

		if	(!input.root	||	!input.root.controls)	{

				return	null;

		}

		const	exactMatch	=	input.root.controls.password	===	input.value;

		return	exactMatch	?	null	:	{	mismatchedPassword:	true	};

}

//	...

this.duplicatePassword	=	new	FormControl('',	[

		Validators.required,

		duplicatePassword

]);

View	Example

FormBuilder	Custom	Validation

260

https://plnkr.co/edit/wfZgPw?p=preview

Visual	Cues	for	Users
HTML5	provides		:invalid		and		:valid		pseudo-selectors	for	its	input	fields.

input[type="text"]:valid	{

		border:	2px	solid	green;

}

input[type="text"]:invalid	{

		border:	2px	solid	red;

}

Unfortunately,	this	system	is	rather	unsophisticated	and	would	require	more	manual	effort	in
order	to	work	with	complex	forms	or	user	behavior.

Rather	than	writing	extra	code,	and	creating	and	enforcing	your	own	CSS	classes,	to
manage	these	behaviors,	Angular	provides	you	with	several	classes,	already	accessible	on
your	inputs.

/*	field	value	is	valid	*/

.ng-valid	{}

/*	field	value	is	invalid	*/

.ng-invalid	{}

/*	field	has	not	been	clicked	in,	tapped	on,	or	tabbed	over	*/

.ng-untouched	{}

/*	field	has	been	previously	entered	*/

.ng-touched	{}

/*	field	value	is	unchanged	from	the	default	value	*/

.ng-pristine	{}

/*	field	value	has	been	modified	from	the	default	*/

.ng-dirty	{}

Note	the	three	pairs:

valid	/	invalid
untouched	/	touched
pristine	/	dirty

Visual	Cues	for	Users

261

These	pairs	can	be	used	in	many	combinations	in	your	CSS	to	change	style	based	on	the
three	separate	flags	they	represent.	Angular	will	toggle	between	the	pairs	on	each	input	as
the	state	of	the	input	changes.

/*	field	has	been	unvisited	and	unchanged	*/

input.ng-untouched.ng-pristine	{}

/*	field	has	been	previously	visited,	and	is	invalid	*/

input.ng-touched.ng-invalid	{}

	.ng-untouched		will	not	be	replaced	by		.ng-touched		until	the	user	leaves	the	input	for
the	first	time

For	templating	purposes,	Angular	also	gives	you	access	to	the	unprefixed	properties	on	the
input,	in	both	code	and	template:

<input	name="myInput"	[formControl]="myCustomInput">

<div	[hidden]="myCustomInput.pristine">I've	been	changed</div>

Visual	Cues	for	Users

262

Modules
Angular	Modules	provides	a	mechanism	for	creating	blocks	of	functionality	that	can	be
combined	to	build	an	application.

Figure:	Used	Lego	Duplo	Bricks	by	Arto	Alanenpää	is	licensed	under	CC	BY-SA	4.0
(https://commons.wikimedia.org/wiki/File:Lego_dublo_arto_alanenpaa_5.JPG)

Modules

263

What	is	an	Angular	Module?
In	Angular,	a	module	is	a	mechanism	to	group	components,	directives,	pipes	and	services
that	are	related,	in	such	a	way	that	can	be	combined	with	other	modules	to	create	an
application.	An	Angular	application	can	be	thought	of	as	a	puzzle	where	each	piece	(or	each
module)	is	needed	to	be	able	to	see	the	full	picture.

Another	analogy	to	understand	Angular	modules	is	classes.	In	a	class,	we	can	define	public
or	private	methods.	The	public	methods	are	the	API	that	other	parts	of	our	code	can	use	to
interact	with	it	while	the	private	methods	are	implementation	details	that	are	hidden.	In	the
same	way,	a	module	can	export	or	hide	components,	directives,	pipes	and	services.	The
exported	elements	are	meant	to	be	used	by	other	modules,	while	the	ones	that	are	not
exported	(hidden)	are	just	used	inside	the	module	itself	and	cannot	be	directly	accessed	by
other	modules	of	our	application.

A	Basic	Use	of	Modules
To	be	able	to	define	modules	we	have	to	use	the	decorator		NgModule	.

import	{	NgModule	}	from	'@angular/core';

@NgModule({

		imports:	[...],

		declarations:	[...],

		bootstrap:	[...]

})

export	class	AppModule	{	}

In	the	example	above,	we	have	turned	the	class		AppModule		into	an	Angular	module	just	by
using	the		NgModule		decorator.	The		NgModule		decorator	requires	at	least	three	properties:
	imports	,		declarations		and		bootstrap	.

The	property		imports		expects	an	array	of	modules.	Here's	where	we	define	the	pieces	of
our	puzzle	(our	application).	The	property		declarations		expects	an	array	of	components,
directives	and	pipes	that	are	part	of	the	module.	The		bootstrap		property	is	where	we	define
the	root	component	of	our	module.	Even	though	this	property	is	also	an	array,	99%	of	the
time	we	are	going	to	define	only	one	component.

There	are	very	special	circumstances	where	more	than	one	component	may	be
required	to	bootstrap	a	module	but	we	are	not	going	to	cover	those	edge	cases	here.

What	is	an	Angular	Module?

264

Here's	how	a	basic	module	made	up	of	just	one	component	would	look	like:

app/app.component.ts

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	'<h1>My	Angular	App</h1>'

})

export	class	AppComponent	{}

app/app.module.ts

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	AppComponent	}	from	'./app.component';

@NgModule({

		imports:	[BrowserModule],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

The	file	app.component.ts	is	just	a	"hello	world"	component,	nothing	interesting	there.	In	the
other	hand,	the	file	app.module.ts	is	following	the	structure	that	we've	seen	before	for
defining	a	module	but	in	this	case,	we	are	defining	the	modules	and	components	that	we	are
going	to	be	using.

The	first	thing	that	we	notice	is	that	our	module	is	importing	the		BrowserModule		as	an	explicit
dependency.	The		BrowserModule		is	a	built-in	module	that	exports	basic	directives,	pipes	and
services.	Unlike	previous	versions	of	Angular,	we	have	to	explicitly	import	those
dependencies	to	be	able	to	use	directives	like		*ngFor		or		*ngIf		in	our	templates.

Given	that	the	root	(and	only)	component	of	our	module	is	the		AppComponent		we	have	to	list
it	in	the		bootstrap		array.	Because	in	the		declarations		property	we	are	supposed	to	define
all	the	components	or	pipes	that	make	up	our	application,	we	have	to	define	the
	AppComponent		again	there	too.

Before	moving	on,	there's	an	important	clarification	to	make.	There	are	two	types	of
modules,	root	modules	and	feature	modules.

What	is	an	Angular	Module?

265

In	the	same	way	that	in	a	module	we	have	one	root	component	and	many	possible
secondary	components,	in	an	application	we	only	have	one	root	module	and	zero	or
many	feature	modules.	To	be	able	to	bootstrap	our	application,	Angular	needs	to	know
which	one	is	the	root	module.	An	easy	way	to	identify	a	root	module	is	by	looking	at	the
	imports		property	of	its		NgModule		decorator.	If	the	module	is	importing	the		BrowserModule	
then	it's	a	root	module,	if	instead	is	importing	the		CommonModule		then	it	is	a	feature	module.

As	developers,	we	need	to	take	care	of	importing	the		BrowserModule		in	the	root	module
and	instead,	import	the		CommonModule		in	any	other	module	we	create	for	the	same
application.	Failing	to	do	so	might	result	in	problems	when	working	with	lazy	loaded
modules	as	we	are	going	to	see	in	following	sections.

By	convention,	the	root	module	should	always	be	named		AppModule	.

Bootstrapping	an	Application
To	bootstrap	our	module	based	application,	we	need	to	inform	Angular	which	one	is	our	root
module	to	perform	the	compilation	in	the	browser.	This	compilation	in	the	browser	is	also
known	as	"Just	in	Time"	(JIT)	compilation.

main.ts

import	{	platformBrowserDynamic	}	from	'@angular/platform-browser-dynamic';

import	{	AppModule	}	from	'./app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

It	is	also	possible	to	perform	the	compilation	as	a	build	step	of	our	workflow.	This
method	is	called	"Ahead	of	Time"	(AOT)	compilation	and	will	require	a	slightly	different
bootstrap	process	that	we	are	going	to	discuss	in	another	section.

View	Example

In	the	next	section	we	are	going	to	see	how	to	create	a	module	with	multiple	components,
services	and	pipes.

What	is	an	Angular	Module?

266

https://plnkr.co/edit/f2TLtnGAtcZTSSuhWNQ9?p=preview

Adding	Components,	Pipes	and	Services
to	a	Module
In	the	previous	section,	we	learned	how	to	create	a	module	with	just	one	component	but	we
know	that	is	hardly	the	case.	Our	modules	are	usually	made	up	of	multiple	components,
services,	directives	and	pipes.	In	this	chapter	we	are	going	to	extend	the	example	we	had
before	with	a	custom	component,	pipe	and	service.

Let's	start	by	defining	a	new	component	that	we	are	going	to	use	to	show	credit	card
information.

credit-card.component.ts

import	{	Component,	OnInit	}	from	'@angular/core';

import	{	CreditCardService	}	from	'./credit-card.service';

@Component({

		selector:	'app-credit-card',

		template:	`

				<p>Your	credit	card	is:	{{	creditCardNumber	|	creditCardMask	}}</p>

		`

})

export	class	CreditCardComponent	implements	OnInit	{

		creditCardNumber:	string;

		constructor(private	creditCardService:	CreditCardService)	{}

		ngOnInit()	{

				this.creditCardNumber	=	this.creditCardService.getCreditCard();

		}

}

This	component	is	relying	on	the		CreditCardService		to	get	the	credit	card	number,	and	on
the	pipe		creditCardMask		to	mask	the	number	except	the	last	4	digits	that	are	going	to	be
visible.

credit-card.service.ts

Adding	Components,	Pipes	and	Services	to	a	Module

267

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	class	CreditCardService	{

		getCreditCard():	string	{

				return	'2131313133123174098';

		}

}

credit-card-mask.pipe.ts

import	{	Pipe,	PipeTransform	}	from	'@angular/core';

@Pipe({

		name:	'creditCardMask'

})

export	class	CreditCardMaskPipe	implements	PipeTransform	{

		transform(plainCreditCard:	string):	string	{

				const	visibleDigits	=	4;

				let	maskedSection	=	plainCreditCard.slice(0,	-visibleDigits);

				let	visibleSection	=	plainCreditCard.slice(-visibleDigits);

				return	maskedSection.replace(/./g,	'*')	+	visibleSection;

		}

}

With	everything	in	place,	we	can	now	use	the		CreditCardComponent		in	our	root	component.

app.component.ts

import	{	Component	}	from	"@angular/core";

@Component({

		selector:	'app-root',

		template:	`

				<h1>My	Angular	App</h1>

				<app-credit-card></app-credit-card>

		`

})

export	class	AppComponent	{}

Of	course,	to	be	able	to	use	this	new	component,	pipe	and	service,	we	need	to	update	our
module,	otherwise	Angular	is	not	going	to	be	able	to	compile	our	application.

app.module.ts

Adding	Components,	Pipes	and	Services	to	a	Module

268

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	AppComponent	}	from	'./app.component';

import	{	CreditCardMaskPipe	}	from	'./credit-card-mask.pipe';

import	{	CreditCardService	}	from	'./credit-card.service';

import	{	CreditCardComponent	}	from	'./credit-card.component';

@NgModule({

		imports:	[BrowserModule],

		providers:	[CreditCardService],

		declarations:	[

				AppComponent,

				CreditCardMaskPipe,

				CreditCardComponent

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Notice	that	we	have	added	the	component		CreditCardComponent		and	the	pipe
	CreditCardMaskPipe		to	the		declarations		property,	along	with	the	root	component	of	the
module		AppComponent	.	In	the	other	hand,	our	custom	service	is	configured	with	the
dependency	injection	system	with	the		providers		property.

View	Example

Be	aware	that	this	method	of	defining	a	service	in	the		providers		property	should	only	be
used	in	the	root	module.	Doing	this	in	a	feature	module	is	going	to	cause	unintended
consequences	when	working	with	lazy	loaded	modules.

In	the	next	section,	we	are	going	to	see	how	to	safely	define	services	in	feature	modules.

Adding	Components,	Pipes	and	Services	to	a	Module

269

https://plnkr.co/edit/jInvNWc5aQ4FZAprExts?p=preview

Creating	a	Feature	Module
When	our	root	module	start	growing,	it	starts	to	be	evident	that	some	elements
(components,	directives,	etc.)	are	related	in	a	way	that	almost	feel	like	they	belong	to	a
library	that	can	be	"plugged	in".

In	our	previous	example,	we	started	to	see	that.	Our	root	module	has	a	component,	a	pipe
and	a	service	that	its	only	purpose	is	to	deal	with	credit	cards.	What	if	we	extract	these	three
elements	to	their	own	feature	module	and	then	we	import	it	into	our	root	module?

We	are	going	to	do	just	that.	The	first	step	is	to	create	two	folders	to	differentiate	the
elements	that	belong	to	the	root	module	from	the	elements	that	belong	to	the	feature
module.

.

├──	app

│			├──	app.component.ts

│			└──	app.module.ts

├──	credit-card

│			├──	credit-card-mask.pipe.ts

│			├──	credit-card.component.ts

│			├──	credit-card.module.ts

│			└──	credit-card.service.ts

├──	index.html

└──	main.ts

Notice	how	each	folder	has	its	own	module	file:	app.module.ts	and	credit-card.module.ts.
Let's	focus	on	the	latter	first.

credit-card/credit-card.module.ts

Creating	a	Feature	Module

270

import	{	NgModule	}	from	'@angular/core';

import	{	CommonModule	}	from	'@angular/common';

import	{	CreditCardMaskPipe	}	from	'./credit-card-mask.pipe';

import	{	CreditCardService	}	from	'./credit-card.service';

import	{	CreditCardComponent	}	from	'./credit-card.component';

@NgModule({

		imports:	[CommonModule],

		declarations:	[

				CreditCardMaskPipe,

				CreditCardComponent

],

		providers:	[CreditCardService],

		exports:	[CreditCardComponent]

})

export	class	CreditCardModule	{}

Our	feature		CreditCardModule		it's	pretty	similar	to	the	root		AppModule		with	a	few	important
differences:

We	are	not	importing	the		BrowserModule		but	the		CommonModule	.	If	we	see	the
documentation	of	the		BrowserModule		here,	we	can	see	that	it's	re-exporting	the
	CommonModule		with	a	lot	of	other	services	that	helps	with	rendering	an	Angular
application	in	the	browser.	These	services	are	coupling	our	root	module	with	a	particular
platform	(the	browser),	but	we	want	our	feature	modules	to	be	platform	independent.
That's	why	we	only	import	the		CommonModule		there,	which	only	exports	common
directives	and	pipes.

When	it	comes	to	components,	pipes	and	directives,	every	module	should	import	its
own	dependencies	disregarding	if	the	same	dependencies	were	imported	in	the	root
module	or	in	any	other	feature	module.	In	short,	even	when	having	multiple	feature
modules,	each	one	of	them	needs	to	import	the		CommonModule	.

We	are	using	a	new	property	called		exports	.	Every	element	defined	in	the
	declarations		array	is	private	by	default.	We	should	only	export	whatever	the	other
modules	in	our	application	need	to	perform	its	job.	In	our	case,	we	only	need	to	make
the		CreditCardComponent		visible	because	it's	being	used	in	the	template	of	the
	AppComponent	.

app/app.component.ts

Creating	a	Feature	Module

271

https://angular.io/docs/ts/latest/api/platform-browser/index/BrowserModule-class.html

...

@Component({

		...

		template:	`

				...

				<app-credit-card></app-credit-card>

		`

})

export	class	AppComponent	{}

We	are	keeping	the		CreditCardMaskPipe		private	because	it's	only	being	used	inside	the
	CreditCardModule		and	no	other	module	should	use	it	directly.

We	can	now	import	this	feature	module	into	our	simplified	root	module.

app/app.module.ts

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	CreditCardModule	}	from	'../credit-card/credit-card.module';

import	{	AppComponent	}	from	'./app.component';

@NgModule({

		imports:	[

				BrowserModule,

				CreditCardModule

],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

At	this	point	we	are	done	and	our	application	behaves	as	expected.

View	Example

Services	and	Lazy	Loaded	Modules
Here's	the	tricky	part	of	Angular	modules.	While	components,	pipes	and	directives	are
scoped	to	its	modules	unless	explicitly	exported,	services	are	globally	available	unless	the
module	is	lazy	loaded.

It's	hard	to	understand	that	at	first	so	let's	try	to	see	what's	happening	with	the
	CreditCardService		in	our	example.	Notice	first	that	the	service	is	not	in	the		exports		array
but	in	the		providers		array.	With	this	configuration,	our	service	is	going	to	be	available

Creating	a	Feature	Module

272

https://plnkr.co/edit/TWUCyonAHYI5v57OuqEO?p=preview

everywhere,	even	in	the		AppComponent		which	lives	in	another	module.	So,	even	when	using
modules,	there's	no	way	to	have	a	"private"	service	unless...	the	module	is	being	lazy
loaded.

When	a	module	is	lazy	loaded,	Angular	is	going	to	create	a	child	injector	(which	is	a	child	of
the	root	injector	from	the	root	module)	and	will	create	an	instance	of	our	service	there.

Imagine	for	a	moment	that	our		CreditCardModule		is	configured	to	be	lazy	loaded.	With	our
current	configuration,	when	the	application	is	bootstrapped	and	our	root	module	is	loaded	in
memory,	an	instance	of	the		CreditCardService		(a	singleton)	is	going	to	be	added	to	the	root
injector.	But,	when	the		CreditCardModule		is	lazy	loaded	sometime	in	the	future,	a	child
injector	will	be	created	for	that	module	with	a	new	instance	of	the		CreditCardService	.	At
this	point	we	have	a	hierarchical	injector	with	two	instances	of	the	same	service,	which	is
not	usually	what	we	want.

Think	for	example	of	a	service	that	does	the	authentication.	We	want	to	have	only	one
singleton	in	the	entire	application,	disregarding	if	our	modules	are	being	loaded	at	bootstrap
or	lazy	loaded.	So,	in	order	to	have	our	feature	module's	service	only	added	to	the	root
injector,	we	need	to	use	a	different	approach.

credit-card/credit-card.module.ts

import	{	NgModule,	ModuleWithProviders	}	from	'@angular/core';

/*	...other	imports...	*/

@NgModule({

		imports:	[CommonModule],

		declarations:	[

				CreditCardMaskPipe,

				CreditCardComponent

],

		exports:	[CreditCardComponent]

})

export	class	CreditCardModule	{

		static	forRoot():	ModuleWithProviders	{

				return	{

						ngModule:	CreditCardModule,

						providers:	[CreditCardService]

				}

		}

}

Different	than	before,	we	are	not	putting	our	service	directly	in	the	property		providers		of	the
	NgModule		decorator.	This	time	we	are	defining	a	static	method	called		forRoot		where	we
define	the	module	and	the	service	we	want	to	export.

With	this	new	syntax,	our	root	module	is	slightly	different.

Creating	a	Feature	Module

273

app/app.module.ts

/*	...imports...	*/

@NgModule({

		imports:	[

				BrowserModule,

				CreditCardModule.forRoot()

],

		declarations:	[AppComponent],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Can	you	spot	the	difference?	We	are	not	importing	the		CreditCardModule		directly,	instead
what	we	are	importing	is	the	object	returned	from	the		forRoot		method,	which	includes	the
	CreditCardService	.	Although	this	syntax	is	a	little	more	convoluted	than	the	original,	it	will
guarantee	us	that	only	one	instance	of	the		CreditCardService		is	added	to	the	root	module.
When	the		CreditCardModule		is	loaded	(even	lazy	loaded),	no	new	instance	of	that	service	is
going	to	be	added	to	the	child	injector.

View	Example

As	a	rule	of	thumb,	always	use	the		forRoot		syntax	when	exporting	services	from
feature	modules,	unless	you	have	a	very	special	need	that	requires	multiple	instances	at
different	levels	of	the	dependency	injection	tree.

Creating	a	Feature	Module

274

https://plnkr.co/edit/YAObDCptFRdEBkFvDSJh?p=preview

Directive	Duplications
Because	we	no	longer	define	every	component	and	directive	directly	in	every	component
that	needs	it,	we	need	to	be	aware	of	how	Angular	modules	handle	directives	and
components	that	target	the	same	element	(have	the	same	selector).

Let's	assume	for	a	moment	that	by	mistake,	we	have	created	two	directives	that	target	the
same	property:

This	example	is	a	variation	of	the	code	found	in	the	official	documentation.

blue-highlight.directive.ts

import	{	Directive,	ElementRef,	Renderer	}	from	'@angular/core';

@Directive({

		selector:	'[appHighlight]'

})

export	class	BlueHighlightDirective	{

		constructor(renderer:	Renderer,	el:	ElementRef)	{

				renderer.setElementStyle(el.nativeElement,	'backgroundColor',	'blue');

				renderer.setElementStyle(el.nativeElement,	'color',	'gray');

		}

}

yellow-highlight.directive.ts

import	{	Directive,	ElementRef,	Renderer	}	from	'@angular/core';

@Directive({

		selector:	'[appHighlight]'

})

export	class	YellowHighlightDirective	{

		constructor(renderer:	Renderer,	el:	ElementRef)	{

				renderer.setElementStyle(el.nativeElement,	'backgroundColor',	'yellow');

		}

}

These	two	directives	are	similar,	they	are	trying	to	style	an	element.	The
	BlueHighlightDirective		will	try	to	set	the	background	color	of	the	element	to	blue	while
changing	the	color	of	the	text	to	gray,	while	the		YellowHighlightDirective		will	try	only	to
change	the	background	color	to	yellow.	Notice	that	both	are	targeting	any	HTML	element
that	has	the	property		appHighlight	.	What	would	happen	if	we	add	both	directives	to	the
same	module?

Directive	Duplications

275

https://angular.io/docs/ts/latest/guide/ngmodule.html#!#resolve-conflicts

app.module.ts

//	Imports

@NgModule({

		imports:	[BrowserModule],

		declarations:	[

				AppComponent,

				BlueHighlightDirective,

				YellowHighlightDirective

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Let's	see	how	we	would	use	it	in	the	only	component	of	the	module.

app.component.ts

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	'<h1	appHighlight>My	Angular	App</h1>'

})

export	class	AppComponent	{}

We	can	see	that	in	the	template	of	our	component,	we	are	using	the	directive		appHighlight	
in	our		h1		element	but,	which	styles	are	going	to	end	up	being	applied?

The	answer	is:	the	text	is	going	to	be	gray	and	the	background	yellow.

View	Example

We	are	allowed	to	define	multiple	directives	that	target	the	same	elements	in	the	same
module.	What's	going	to	happen	is	that	Angular	is	going	to	do	every	transformation	in	order.

declarations:	[

		...,

		BlueHighlightDirective,

		YellowHighlightDirective

]

Because	we	have	defined	both	directives	in	an	array,	and	arrays	are	ordered	collection	of
items,	when	the	compiler	finds	an	element	with	the	property		appHighlight	,	it	will	first	apply
the	transformations	of		BlueHighlightDirective	,	setting	the	text	gray	and	the	background

Directive	Duplications

276

https://plnkr.co/edit/yY3RRPDxf6urDfsMVNik?p=preview

blue,	and	then	will	apply	the	transformations	of		YellowHighlightDirective	,	changing	again
the	background	color	to	yellow.

In	summary,	when	two	or	more	directives	target	the	same	element,	they	are	going	to
be	applied	in	the	order	they	were	defined.

Directive	Duplications

277

Lazy	Loading	a	Module
Another	advantage	of	using	modules	to	group	related	pieces	of	functionality	of	our
application	is	the	ability	to	load	those	pieces	on	demand.	Lazy	loading	modules	helps	us
decrease	the	startup	time.	With	lazy	loading	our	application	does	not	need	to	load	everything
at	once,	it	only	needs	to	load	what	the	user	expects	to	see	when	the	app	first	loads.	Modules
that	are	lazily	loaded	will	only	be	loaded	when	the	user	navigates	to	their	routes.

To	show	this	relationship,	let's	start	by	defining	a	simple	module	that	will	act	as	the	root
module	of	our	example	application.

app/app.module.ts

import	{	NgModule	}	from	'@angular/core';

import	{	BrowserModule		}	from	'@angular/platform-browser';

import	{	AppComponent	}	from	'./app.component';

import	{	EagerComponent	}	from	'./eager.component';

import	{	routing	}	from	'./app.routing';

@NgModule({

		imports:	[

				BrowserModule,

				routing

],

		declarations:	[

				AppComponent,

				EagerComponent

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{}

So	far	this	is	a	very	common	module	that	relies	on	the		BrowserModule	,	has	a		routing	
mechanism	and	two	components:		AppComponent		and		EagerComponent	.	For	now,	let's	focus
on	the	root	component	of	our	application	(AppComponent)	where	the	navigation	is	defined.

app/app.component.ts

Lazy	Loading	a	Module

278

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>My	App</h1>

				<nav>

						Eager

						Lazy

				</nav>

				<router-outlet></router-outlet>

		`

})

export	class	AppComponent	{}

Our	navigation	system	has	only	two	paths:		eager		and		lazy	.	To	know	what	those	paths	are
loading	when	clicking	on	them	we	need	to	take	a	look	at	the		routing		object	that	we	passed
to	the	root	module.

app/app.routing.ts

import	{	ModuleWithProviders	}	from	'@angular/core';

import	{	Routes,	RouterModule	}	from	'@angular/router';

import	{	EagerComponent	}	from	'./eager.component';

const	routes:	Routes	=	[

		{	path:	'',	redirectTo:	'eager',	pathMatch:	'full'	},

		{	path:	'eager',	component:	EagerComponent	},

		{	path:	'lazy',	loadChildren:	'lazy/lazy.module#LazyModule'	}

];

export	const	routing:	ModuleWithProviders	=	RouterModule.forRoot(routes);

Here	we	can	see	that	the	default	path	in	our	application	is	called		eager		which	will	load
	EagerComponent	.

app/eager.component.ts

import	{	Component	}	from	'@angular/core';

@Component({

		template:	'<p>Eager	Component</p>'

})

export	class	EagerComponent	{}

Lazy	Loading	a	Module

279

But	more	importantly,	we	can	see	that	whenever	we	try	to	go	to	the	path		lazy	,	we	are
going	to	lazy	load	a	module	conveniently	called		LazyModule	.	Look	closely	at	the	definition	of
that	route:

{	path:	'lazy',	loadChildren:	'lazy/lazy.module#LazyModule'	}

There's	a	few	important	things	to	notice	here:

1.	 We	use	the	property		loadChildren		instead	of		component	.
2.	 We	pass	a	string	instead	of	a	symbol	to	avoid	loading	the	module	eagerly.
3.	 We	define	not	only	the	path	to	the	module	but	the	name	of	the	class	as	well.

There's	nothing	special	about		LazyModule		other	than	it	has	its	own		routing		and	a
component	called		LazyComponent	.

app/lazy/lazy.module.ts

import	{	NgModule	}	from	'@angular/core';

import	{	LazyComponent	}			from	'./lazy.component';

import	{	routing	}	from	'./lazy.routing';

@NgModule({

		imports:	[routing],

		declarations:	[LazyComponent]

})

export	class	LazyModule	{}

If	we	define	the	class		LazyModule		as	the		default		export	of	the	file,	we	don't	need	to
define	the	class	name	in	the		loadChildren		property	as	shown	above.

The		routing		object	is	very	simple	and	only	defines	the	default	component	to	load	when
navigating	to	the		lazy		path.

app/lazy/lazy.routing.ts

import	{	ModuleWithProviders	}	from	'@angular/core';

import	{	Routes,	RouterModule	}	from	'@angular/router';

import	{	LazyComponent	}	from	'./lazy.component';

const	routes:	Routes	=	[

		{	path:	'',	component:	LazyComponent	}

];

export	const	routing:	ModuleWithProviders	=	RouterModule.forChild(routes);

Lazy	Loading	a	Module

280

Notice	that	we	use	the	method	call		forChild		instead	of		forRoot		to	create	the	routing
object.	We	should	always	do	that	when	creating	a	routing	object	for	a	feature	module,	no
matter	if	the	module	is	supposed	to	be	eagerly	or	lazily	loaded.

Finally,	our		LazyComponent		is	very	similar	to		EagerComponent		and	is	just	a	placeholder	for
some	text.

app/lazy/lazy.component.ts

import	{	Component	}	from	'@angular/core';

@Component({

		template:	'<p>Lazy	Component</p>'

})

export	class	LazyComponent	{}

View	Example

When	we	load	our	application	for	the	first	time,	the		AppModule		along	the		AppComponent		will
be	loaded	in	the	browser	and	we	should	see	the	navigation	system	and	the	text	"Eager
Component".	Until	this	point,	the		LazyModule		has	not	being	downloaded,	only	when	we	click
the	link	"Lazy"	the	needed	code	will	be	downloaded	and	we	will	see	the	message	"Lazy
Component"	in	the	browser.

We	have	effectively	lazily	loaded	a	module.

Lazy	Loading	a	Module

281

https://plnkr.co/edit/vpCqRHDAj7V6mlN1AknN?p=preview

Lazy	Loading	and	the	Dependency
Injection	Tree
Lazy	loaded	modules	create	their	own	branch	on	the	Dependency	Injection	(DI)	tree.	This
means	that	it's	possible	to	have	services	that	belong	to	a	lazy	loaded	module,	that	are	not
accessible	by	the	root	module	or	any	other	eagerly	loaded	module	of	our	application.

To	show	this	behaviour,	let's	continue	with	the	example	of	the	previous	section	and	add	a
	CounterService		to	our		LazyModule	.

app/lazy/lazy.module.ts

...

import	{	CounterService	}	from	'./counter.service';

@NgModule({

		...

		providers:	[CounterService]

})

export	class	LazyModule	{}

Here	we	added	the		CounterService		to	the		providers		array.	Our		CounterService		is	a
simple	class	that	holds	a	reference	to	a		counter		property.

app/lazy/counter.service.ts

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	class	CounterService	{

		counter	=	0;

}

We	can	modify	the		LazyComponent		to	use	this	service	with	a	button	to	increment	the
	counter		property.

app/lazy/lazy.component.ts

Lazy	Loading	and	the	Dependency	Injection	Tree

282

import	{	Component	}	from	'@angular/core';

import	{	CounterService	}	from	'./counter.service';

@Component({

		template:	`

				<p>Lazy	Component</p>

				<button	(click)="increaseCounter()">Increase	Counter</button>

				<p>Counter:	{{	counterService.counter	}}</p>

		`

})

export	class	LazyComponent	{

		constructor(public	counterService:	CounterService)	{}

		increaseCounter()	{

				this.counterService.counter	+=	1;

		}

}

View	Example

The	service	is	working.	If	we	increment	the	counter	and	then	navigate	back	and	forth
between	the		eager		and	the		lazy		routes,	the		counter		value	will	persist	in	the	lazy	loaded
module.

But	the	question	is,	how	can	we	verify	that	the	service	is	isolated	and	cannot	be	used	in	a
component	that	belongs	to	a	different	module?	Let's	try	to	use	the	same	service	in	the
	EagerComponent	.

app/eager.component.ts

import	{	Component	}	from	'@angular/core';

import	{	CounterService	}	from	'./lazy/counter.service';

@Component({

		template:	`

				<p>Eager	Component</p>

				<button	(click)="increaseCounter()">Increase	Counter</button>

				<p>Counter:	{{	counterService.counter	}}</p>

		`

})

export	class	EagerComponent	{

		constructor(public	counterService:	CounterService)	{}

		increaseCounter()	{

				this.counterService.counter	+=	1;

		}

}

Lazy	Loading	and	the	Dependency	Injection	Tree

283

https://plnkr.co/edit/C1QKHk9Uijtxtb13UU9t?p=preview

If	we	try	to	run	this	new	version	of	our	code,	we	are	going	to	get	an	error	message	in	the
browser	console:

No	provider	for	CounterService!

What	this	error	tells	us	is	that	the		AppModule	,	where	the		EagerComponent		is	defined,	has	no
knowledge	of	a	service	called		CounterService	.		CounterService		lives	in	a	different	branch	of
the	DI	tree	created	for		LazyModule		when	it	was	lazy	loaded	in	the	browser.

Lazy	Loading	and	the	Dependency	Injection	Tree

284

Shared	Modules	and	Dependency	Injection
Now	that	we	have	proven	that	lazy	loaded	modules	create	their	own	branch	on	the
Dependency	Injection	tree,	we	need	to	learn	how	to	deal	with	services	that	are	imported	by
means	of	a	shared	module	in	both	an	eager	and	lazy	loaded	module.

Let's	create	a	new	module	called		SharedModule		and	define	the		CounterService		there.

app/shared/shared.module.ts

import	{	NgModule	}	from	'@angular/core';

import	{	CounterService	}	from	'./counter.service';

@NgModule({

		providers:	[CounterService]

})

export	class	SharedModule	{}

Now	we	are	going	to	import	that		SharedModule		in	the		AppModule		and	the		LazyModule	.

app/app.module.ts

...

import	{	SharedModule	}	from	'./shared/shared.module';

@NgModule({

		imports:	[

				SharedModule,

				...

],

		declarations:	[

				EagerComponent,

				...

]

		...

})

export	class	AppModule	{}

app/lazy/lazy.module.ts

Shared	Modules	and	Dependency	Injection

285

...

import	{	SharedModule	}	from	'../shared/shared.module';

@NgModule({

		imports:	[

				SharedModule,

				...

],

		declarations:	[LazyComponent]

})

export	class	LazyModule	{}

With	this	configuration,	the	components	of	both	modules	will	have	access	to	the
	CounterService	.	We	are	going	to	use	this	service	in		EagerComponent		and		LazyComponent		in
exactly	the	same	way.	Just	a	button	to	increase	the	internal		counter		property	of	the	service.

app/eager.component.ts

import	{	Component	}	from	'@angular/core';

import	{	CounterService	}	from	'./shared/counter.service';

@Component({

		template:	`

				<p>Eager	Component</p>

				<button	(click)="increaseCounter()">Increase	Counter</button>

				<p>Counter:	{{	counterService.counter	}}</p>

		`

})

export	class	EagerComponent	{

		constructor(public	counterService:	CounterService)	{}

		increaseCounter()	{

				this.counterService.counter	+=	1;

		}

}

View	Example

If	you	play	with	the	live	example,	you	will	notice	that	the		counter		seems	to	behave
independently	in		EagerComponent		and		LazyComponent	,	we	can	increase	the	value	of	one
counter	without	altering	the	other	one.	In	other	words,	we	have	ended	up	with	two	instances
of	the		CounterService	,	one	that	lives	in	the	root	of	the	DI	tree	of	the		AppModule		and	another
that	lives	in	a	lower	branch	of	the	DI	tree	accessible	by	the		LazyModule	.

This	is	not	neccessarily	wrong,	you	may	find	situations	where	you	could	need	different
instances	of	the	same	service,	but	I	bet	most	of	the	time	that's	not	what	you	want.	Think	for
example	of	an	authentication	service,	you	need	to	have	the	same	instance	with	the	same

Shared	Modules	and	Dependency	Injection

286

https://plnkr.co/edit/L2ypUQZiltSPXnLlxBoa?p=info

information	available	everywhere	disregarding	if	we	are	using	the	service	in	an	eagerly	or
lazy	loaded	module.

In	the	next	section	we	are	going	to	learn	how	to	have	only	one	instance	of	a	shared	service.

Shared	Modules	and	Dependency	Injection

287

Sharing	the	Same	Dependency	Injection
Tree
So	far	our	problem	is	that	we	are	creating	two	instances	of	the	same	services	in	different
levels	of	the	DI	tree.	The	instance	created	in	the	lower	branch	of	the	tree	is	shadowing	the
one	defined	at	the	root	level.	The	solution?	To	avoid	creating	a	second	instance	in	a	lower
level	of	the	DI	tree	for	the	lazy	loaded	module	and	only	use	the	service	instance	registered
at	the	root	of	the	tree.

To	accomplish	that,	we	need	to	modify	the	definition	of	the		SharedModule		and	instead	of
defining	our	service	in	the		providers		property,	we	need	to	create	a	static	method	called
	forRoot		that	exports	the	service	along	with	the	module	itself.

app/shared/shared.module.ts

import	{	NgModule,	ModuleWithProviders	}	from	'@angular/core';

import	{	CounterService	}	from	'./counter.service';

@NgModule({})

export	class	SharedModule	{

		static	forRoot():	ModuleWithProviders	{

				return	{

						ngModule:	SharedModule,

						providers:	[CounterService]

				};

		}

}

With	this	setup,	we	can	import	this	module	in	our	root	module		AppModule		calling	the
	forRoot		method	to	register	the	module	and	the	service.

app/app.module.ts

...

import	{	SharedModule	}	from	'./shared/shared.module';

@NgModule({

		imports:	[

				SharedModule.forRoot(),

				...

],

		...

})

export	class	AppModule	{}

Sharing	the	Same	Dependency	Injection	Tree

288

In	contrast,	when	import	the	same	module	in	our		LazyModule		we	will	not	call	the		forRoot	
method	because	we	don't	want	to	register	the	service	again	in	a	different	level	of	the	DI	tree,
so	the	declaration	of	the		LazyModule		doesn't	change.

app/lazy/lazy.module.ts

...

import	{	SharedModule	}	from	'../shared/shared.module';

@NgModule({

		imports:	[

				SharedModule,

				...

],

		...

})

export	class	LazyModule	{}

View	Example

This	time,	whenever	we	change	the	value	of	the		counter		property,	this	value	is	shared
between	the		EagerComponent		and	the		LazyComponent		proving	that	we	are	using	the	same
instance	of	the		CounterService	.

Sharing	the	Same	Dependency	Injection	Tree

289

https://plnkr.co/edit/4jHjiq1ZlwSsHaBxbeqA?p=preview

Routing
In	this	section	we	will	discuss	the	role	of	routing	in	Single	Page	Applications	and	Angular's
new	component	router.

Routing

290

Why	Routing?
Routing	allows	us	to	express	some	aspects	of	the	application's	state	in	the	URL.	Unlike	with
server-side	front-end	solutions,	this	is	optional	-	we	can	build	the	full	application	without	ever
changing	the	URL.	Adding	routing,	however,	allows	the	user	to	go	straight	into	certain
aspects	of	the	application.	This	is	very	convenient	as	it	can	keep	your	application	linkable
and	bookmarkable	and	allow	users	to	share	links	with	others.

Routing	allows	you	to:

Maintain	the	state	of	the	application
Implement	modular	applications
Implement	the	application	based	on	the	roles	(certain	roles	have	access	to	certain
URLs)

Why	Routing?

291

Configuring	Routes

Base	URL	Tag
The	Base	URL	tag	must	be	set	within	the		<head>		tag	of	index.html:

<base	href="/">

In	the	demos	we	use	a	script	tag	to	set	the	base	tag.	In	a	real	application	it	must	be	set
as	above.

Route	Definition	Object
The		Routes		type	is	an	array	of	routes	that	defines	the	routing	for	the	application.	This	is
where	we	can	set	up	the	expected	paths,	the	components	we	want	to	use	and	what	we	want
our	application	to	understand	them	as.

Each	route	can	have	different	attributes;	some	of	the	common	attributes	are:

path	-	URL	to	be	shown	in	the	browser	when	application	is	on	the	specific	route
component	-	component	to	be	rendered	when	the	application	is	on	the	specific	route
redirectTo	-	redirect	route	if	needed;	each	route	can	have	either	component	or	redirect
attribute	defined	in	the	route	(covered	later	in	this	chapter)
pathMatch	-	optional	property	that	defaults	to	'prefix';	determines	whether	to	match	full
URLs	or	just	the	beginning.	When	defining	a	route	with	empty	path	string	set	pathMatch
to	'full',	otherwise	it	will	match	all	paths.
children	-	array	of	route	definitions	objects	representing	the	child	routes	of	this	route
(covered	later	in	this	chapter).

To	use		Routes	,	create	an	array	of	route	configurations.

Below	is	the	sample		Routes		array	definition:

const	routes:	Routes	=	[

		{	path:	'component-one',	component:	ComponentOne	},

		{	path:	'component-two',	component:	ComponentTwo	}

];

See	Routes	definition

Configuring	Routes

292

https://angular.io/docs/ts/latest/api/router/index/Route-interface.html
https://angular.io/docs/ts/latest/api/router/index/Routes-type-alias.html

RouterModule
	RouterModule.forRoot		takes	the		Routes		array	as	an	argument	and	returns	a	configured
router	module.	The	following	sample	shows	how	we	import	this	module	in	an		app.routes.ts	
file.

app/app.routes.ts

...

import	{	RouterModule,	Routes	}	from	'@angular/router';

const	routes:	Routes	=	[

		{	path:	'component-one',	component:	ComponentOne	},

		{	path:	'component-two',	component:	ComponentTwo	}

];

export	const	routing	=	RouterModule.forRoot(routes);

We	then	import	our	routing	configuration	in	the	root	of	our	application.

app/app.module.ts

...

import	{	routing	}	from	'./app.routes';

@NgModule({

		imports:	[

				BrowserModule,

				routing

],

		declarations:	[

				AppComponent,

				ComponentOne,

				ComponentTwo

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{

}

Configuring	Routes

293

Redirecting	the	Router	to	Another	Route
When	your	application	starts,	it	navigates	to	the	empty	route	by	default.	We	can	configure
the	router	to	redirect	to	a	named	route	by	default:

export	const	routes:	Routes	=	[

		{	path:	'',	redirectTo:	'component-one',	pathMatch:	'full'	},

		{	path:	'component-one',	component:	ComponentOne	},

		{	path:	'component-two',	component:	ComponentTwo	}

];

The		pathMatch		property,	which	is	required	for	redirects,	tells	the	router	how	it	should	match
the	URL	provided	in	order	to	redirect	to	the	specified	route.	Since		pathMatch:	full		is
provided,	the	router	will	redirect	to		component-one		if	the	entire	URL	matches	the	empty	path
('').

When	starting	the	application,	it	will	now	automatically	navigate	to	the	route	for		component-
one	.

Redirecting	the	Router	to	Another	Route

294

Defining	Links	Between	Routes

RouterLink
Add	links	to	routes	using	the		RouterLink		directive.

For	example	the	following	code	defines	a	link	to	the	route	at	path		component-one	.

Component	One

Navigating	Programmatically
Alternatively,	you	can	navigate	to	a	route	by	calling	the		navigate		function	on	the	router:

this.router.navigate(['/component-one']);

Defining	Links	Between	Routes

295

Dynamically	Adding	Route	Components
Rather	than	define	each	route's	component	separately,	use		RouterOutlet		which	serves	as	a
component	placeholder;	Angular	dynamically	adds	the	component	for	the	route	being
activated	into	the		<router-outlet></router-outlet>		element.

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app',

		template:	`

				<nav>

						Component	One

						Component	Two

				</nav>

				<router-outlet></router-outlet>

				<!--	Route	components	are	added	by	router	here	-->

		`

})

export	class	AppComponent	{}

In	the	above	example,	the	component	corresponding	to	the	route	specified	will	be	placed
after	the		<router-outlet></router-outlet>		element	when	the	link	is	clicked.

View	Example

View	examples	running	in	full	screen	mode	to	see	route	changes	in	the	URL.

Dynamically	Adding	Route	Components

296

https://plnkr.co/edit/OHfytJquXKm8jvSe2T9Y?p=preview

Using	Route	Parameters
Say	we	are	creating	an	application	that	displays	a	product	list.	When	the	user	clicks	on	a
product	in	the	list,	we	want	to	display	a	page	showing	the	detailed	information	about	that
product.	To	do	this	you	must:

add	a	route	parameter	ID
link	the	route	to	the	parameter
add	the	service	that	reads	the	parameter.

Declaring	Route	Parameters
The	route	for	the	component	that	displays	the	details	for	a	specific	product	would	need	a
route	parameter	for	the	ID	of	that	product.	We	could	implement	this	using	the	following
	Routes	:

export	const	routes:	Routes	=	[

		{	path:	'',	redirectTo:	'product-list',	pathMatch:	'full'	},

		{	path:	'product-list',	component:	ProductList	},

		{	path:	'product-details/:id',	component:	ProductDetails	}

];

Note		:id		in	the	path	of	the		product-details		route,	which	places	the	parameter	in	the	path.
For	example,	to	see	the	product	details	page	for	product	with	ID	5,	you	must	use	the
following	URL:		localhost:3000/product-details/5	

Linking	to	Routes	with	Parameters
In	the		ProductList		component	you	could	display	a	list	of	products.	Each	product	would
have	a	link	to	the		product-details		route,	passing	the	ID	of	the	product:

<a	*ngFor="let	product	of	products"

		[routerLink]="['/product-details',	product.id]">

		{{	product.name	}}

Note	that	the		routerLink		directive	passes	an	array	which	specifies	the	path	and	the	route
parameter.	Alternatively	we	could	navigate	to	the	route	programmatically:

Using	Route	Parameters

297

goToProductDetails(id)	{

		this.router.navigate(['/product-details',	id]);

}

Reading	Route	Parameters
The		ProductDetails		component	must	read	the	parameter,	then	load	the	product	based	on
the	ID	given	in	the	parameter.

The		ActivatedRoute		service	provides	a		params		Observable	which	we	can	subscribe	to	to
get	the	route	parameters	(see	Observables).

import	{	Component,	OnInit,	OnDestroy	}	from	'@angular/core';

import	{	ActivatedRoute	}	from	'@angular/router';

@Component({

		selector:	'product-details',

		template:	`

				<div>

						Showing	product	details	for	product:	{{id}}

				</div>

		`,

})

export	class	LoanDetailsPage	implements	OnInit,	OnDestroy	{

		id:	number;

		private	sub:	any;

		constructor(private	route:	ActivatedRoute)	{}

		ngOnInit()	{

				this.sub	=	this.route.params.subscribe(params	=>	{

							this.id	=	+params['id'];	//	(+)	converts	string	'id'	to	a	number

							//	In	a	real	app:	dispatch	action	to	load	the	details	here.

				});

		}

		ngOnDestroy()	{

				this.sub.unsubscribe();

		}

}

The	reason	that	the		params		property	on		ActivatedRoute		is	an	Observable	is	that	the
router	may	not	recreate	the	component	when	navigating	to	the	same	component.	In	this
case	the	parameter	may	change	without	the	component	being	recreated.

View	Basic	Example

Using	Route	Parameters

298

https://plnkr.co/edit/UjUlWKpO0wxQfB3P6YUG?p=preview

View	Example	with	Programmatic	Route	Navigation

View	examples	running	in	full	screen	mode	to	see	route	changes	in	the	URL.

Using	Route	Parameters

299

https://plnkr.co/edit/5R0URH14ZiVjx81HEZxL?p=preview

Defining	Child	Routes
When	some	routes	may	only	be	accessible	and	viewed	within	other	routes	it	may	be
appropriate	to	create	them	as	child	routes.

For	example:	The	product	details	page	may	have	a	tabbed	navigation	section	that	shows	the
product	overview	by	default.	When	the	user	clicks	the	"Technical	Specs"	tab	the	section
shows	the	specs	instead.

If	the	user	clicks	on	the	product	with	ID	3,	we	want	to	show	the	product	details	page	with	the
overview:

	localhost:3000/product-details/3/overview	

When	the	user	clicks	"Technical	Specs":

	localhost:3000/product-details/3/specs	

	overview		and		specs		are	child	routes	of		product-details/:id	.	They	are	only	reachable
within	product	details.

Our		Routes		with	children	would	look	like:

export	const	routes:	Routes	=	[

		{	path:	'',	redirectTo:	'product-list',	pathMatch:	'full'	},

		{	path:	'product-list',	component:	ProductList	},

		{	path:	'product-details/:id',	component:	ProductDetails,

				children:	[

						{	path:	'',	redirectTo:	'overview',	pathMatch:	'full'	},

						{	path:	'overview',	component:	Overview	},

						{	path:	'specs',	component:	Specs	}

]

		}

];

Where	would	the	components	for	these	child	routes	be	displayed?	Just	like	we	had	a
	<router-outlet></router-outlet>		for	the	root	application	component,	we	would	have	a
router	outlet	inside	the		ProductDetails		component.	The	components	corresponding	to	the
child	routes	of		product-details		would	be	placed	in	the	router	outlet	in		ProductDetails	.

Defining	Child	Routes

300

import	{	Component,	OnInit,	OnDestroy	}	from	'@angular/core';

import	{	ActivatedRoute	}	from	'@angular/router';

@Component({

		selector:	'product-details',

		template:	`

				<p>Product	Details:	{{id}}</p>

				<!--	Product	information	-->

				<nav>

						<a	[routerLink]="['overview']">Overview

						<a	[routerLink]="['specs']">Technical	Specs

				</nav>

				<router-outlet></router-outlet>

				<!--	Overview	&	Specs	components	get	added	here	by	the	router	-->

		`

})

export	default	class	ProductDetails	implements	OnInit,	OnDestroy	{

		id:	number;

		constructor(private	route:	ActivatedRoute)	{}

		ngOnInit()	{

				this.sub	=	this.route.params.subscribe(params	=>	{

							this.id	=	+params['id'];	//	(+)	converts	string	'id'	to	a	number

				});

		}

		ngOnDestroy()	{

				this.sub.unsubscribe();

		}

}

Alternatively,	we	could	specify		overview		route	URL	simply	as:

	localhost:3000/product-details/3	

export	const	routes:	Routes	=	[

		{	path:	'',	redirectTo:	'product-list',	pathMatch:	'full'	},

		{	path:	'product-list',	component:	ProductList	},

		{	path:	'product-details/:id',	component:	ProductDetails,

				children:	[

						{	path:	'',	component:	Overview	},

						{	path:	'specs',	component:	Specs	}

]

		}

];

Since	the		Overview		child	route	of		product-details		has	an	empty	path,	it	will	be	loaded	by
default.	The		specs		child	route	remains	the	same.

Defining	Child	Routes

301

View	Example	with	child	routes

View	Example	with	route	params	&	child	routes

View	examples	running	in	full	screen	mode	to	see	route	changes	in	the	URL.

Accessing	a	Parent's	Route	Parameters
In	the	above	example,	say	that	the	child	routes	of		product-details		needed	the	ID	of	the
product	to	fetch	the	spec	or	overview	information.	The	child	route	component	can	access	the
parent	route's	parameters	as	follows:

export	default	class	Overview	{

		parentRouteId:	number;

		private	sub:	any;

		constructor(private	router:	Router,

				private	route:	ActivatedRoute)	{}

		ngOnInit()	{

				//	Get	parent	ActivatedRoute	of	this	route.

				this.sub	=	this.router.routerState.parent(this.route)

						.params.subscribe(params	=>	{

								this.parentRouteId	=	+params["id"];

						});

		}

		ngOnDestroy()	{

				this.sub.unsubscribe();

		}

}

View	Example	child	routes	accessing	parent's	route	parameters

View	examples	running	in	full	screen	mode	to	see	route	changes	in	the	URL.

Links
Routes	can	be	prepended	with		/	,	or		../	;	this	tells	Angular	where	in	the	route	tree	to	link
to.

Defining	Child	Routes

302

https://plnkr.co/edit/MqNv6RyQvzsiZTp0Dkpf?p=preview
https://plnkr.co/edit/xFL7q0HeTGBPQT1ZiMnI?p=preview
https://plnkr.co/edit/7stoOP3oEl7dqwsgBgu9?p=preview

Prefix Looks	in

	/	 Root	of	the	application

none Current	component	children	routes

	../	 Current	component	parent	routes

Example:

<a	[routerLink]="['route-one']">Route	One

<a	[routerLink]="['../route-two']">Route	Two

<a	[routerLink]="['/route-three']">Route	Three

In	the	above	example,	the	link	for	route	one	links	to	a	child	of	the	current	route.	The	link	for
route	two	links	to	a	sibling	of	the	current	route.	The	link	for	route	three	links	to	a	child	of	the
root	component	(same	as	route	one	link	if	current	route	is	root	component).

View	Example	with	linking	throughout	route	tree

View	examples	running	in	full	screen	mode	to	see	route	changes	in	the	URL.

Defining	Child	Routes

303

https://plnkr.co/edit/gsJxf6ukOXd4kNjLLVR3?p=preview

Controlling	Access	to	or	from	a	Route
To	control	whether	the	user	can	navigate	to	or	away	from	a	given	route,	use	route	guards.

For	example,	we	may	want	some	routes	to	only	be	accessible	once	the	user	has	logged	in
or	accepted	Terms	&	Conditions.	We	can	use	route	guards	to	check	these	conditions	and
control	access	to	routes.

Route	guards	can	also	control	whether	a	user	can	leave	a	certain	route.	For	example,	say
the	user	has	typed	information	into	a	form	on	the	page,	but	has	not	submitted	the	form.	If
they	were	to	leave	the	page,	they	would	lose	the	information.	We	may	want	to	prompt	the
user	if	the	user	attempts	to	leave	the	route	without	submitting	or	saving	the	information.

Registering	the	Route	Guards	with	Routes
In	order	to	use	route	guards,	we	must	register	them	with	the	specific	routes	we	want	them	to
run	for.

For	example,	say	we	have	an		accounts		route	that	only	users	that	are	logged	in	can
navigate	to.	This	page	also	has	forms	and	we	want	to	make	sure	the	user	has	submitted
unsaved	changes	before	leaving	the	accounts	page.

In	our	route	config	we	can	add	our	guards	to	that	route:

import	{	Routes,	RouterModule	}	from	'@angular/router';

import	{	AccountPage	}	from	'./account-page';

import	{	LoginRouteGuard	}	from	'./login-route-guard';

import	{	SaveFormsGuard	}	from	'./save-forms-guard';

const	routes:	Routes	=	[

		{	path:	'home',	component:	HomePage	},

		{

				path:	'accounts',

				component:	AccountPage,

				canActivate:	[LoginRouteGuard],

				canDeactivate:	[SaveFormsGuard]

		}

];

export	const	appRoutingProviders:	any[]	=	[];

export	const	routing	=	RouterModule.forRoot(routes);

Controlling	Access	to	or	from	a	Route

304

Now		LoginRouteGuard		will	be	checked	by	the	router	when	activating	the		accounts		route,
and		SaveFormsGuard		will	be	checked	when	leaving	that	route.

Implementing	CanActivate
Let's	look	at	an	example	activate	guard	that	checks	whether	the	user	is	logged	in:

import	{	CanActivate	}	from	'@angular/router';

import	{	Injectable	}	from	'@angular/core';

import	{	LoginService	}	from	'./login-service';

@Injectable()

export	class	LoginRouteGuard	implements	CanActivate	{

		constructor(private	loginService:	LoginService)	{}

		canActivate()	{

				return	this.loginService.isLoggedIn();

		}

}

This	class	implements	the		CanActivate		interface	by	implementing	the		canActivate	
function.

When		canActivate		returns	true,	the	user	can	activate	the	route.	When		canActivate		returns
false,	the	user	cannot	access	the	route.	In	the	above	example,	we	allow	access	when	the
user	is	logged	in.

	canActivate		can	also	be	used	to	notify	the	user	that	they	can't	access	that	part	of	the
application,	or	redirect	them	to	the	login	page.

See	Official	Definition	for	CanActivate

Implementing	CanDeactivate
	CanDeactivate		works	in	a	similar	way	to		CanActivate		but	there	are	some	important
differences.	The		canDeactivate		function	passes	the	component	being	deactivated	as	an
argument	to	the	function:

export	interface	CanDeactivate<T>	{

		canDeactivate(component:	T,	route:	ActivatedRouteSnapshot,	state:	RouterStateSnapsho

t):

						Observable<boolean>|Promise<boolean>|boolean;

}

Controlling	Access	to	or	from	a	Route

305

https://angular.io/docs/ts/latest/api/router/index/CanActivate-interface.html

We	can	use	that	component	to	determine	whether	the	user	can	deactivate.

import	{	CanDeactivate	}	from	'@angular/router';

import	{	Injectable	}	from	'@angular/core';

import	{	AccountPage	}	from	'./account-page';

@Injectable()

export	class	SaveFormsGuard	implements	CanDeactivate<AccountPage>	{

		canDeactivate(component:	AccountPage)	{

				return	component.areFormsSaved();

		}

}

See	Official	Definition	for	CanDeactivate

Async	Route	Guards
The		canActivate		and		canDeactivate		functions	can	either	return	values	of	type		boolean	,	or
	Observable<boolean>		(an	Observable	that	resolves	to		boolean).	If	you	need	to	do	an
asynchronous	request	(like	a	server	request)	to	determine	whether	the	user	can	navigate	to
or	away	from	the	route,	you	can	simply	return	an		Observable<boolean>	.	The	router	will	wait
until	it	is	resolved	and	use	that	value	to	determine	access.

For	example,	when	the	user	navigates	away	you	could	have	a	dialog	service	ask	the	user	to
confirm	the	navigation.	The	dialog	service	returns	an		Observable<boolean>		which	resolves	to
true	if	the	user	clicks	'OK',	or	false	if	user	clicks	'Cancel'.

		canDeactivate()	{

				return	dialogService.confirm('Discard	unsaved	changes?');

		}

View	Example

See	Official	Documentation	for	Route	Guards

Controlling	Access	to	or	from	a	Route

306

https://angular.io/docs/ts/latest/api/router/index/CanDeactivate-interface.html
http://plnkr.co/edit/sRNxfXsbcWnPU818aZsu?p=preview
https://angular.io/docs/ts/latest/guide/router.html#!#guards

Passing	Optional	Parameters
Query	parameters	allow	you	to	pass	optional	parameters	to	a	route	such	as	pagination
information.

For	example,	on	a	route	with	a	paginated	list,	the	URL	might	look	like	the	following	to
indicate	that	we've	loaded	the	second	page:

	localhost:3000/product-list?page=2	

The	key	difference	between	query	parameters	and	route	parameters	is	that	route
parameters	are	essential	to	determining	route,	whereas	query	parameters	are	optional.

Passing	Query	Parameters
Use	the		[queryParams]		directive	along	with		[routerLink]		to	pass	query	parameters.	For
example:

<a	[routerLink]="['product-list']"	[queryParams]="{	page:	99	}">Go	to	Page	99

Alternatively,	we	can	navigate	programmatically	using	the		Router		service:

		goToPage(pageNum)	{

				this.router.navigate(['/product-list'],	{	queryParams:	{	page:	pageNum	}	});

		}

Reading	Query	Parameters
Similar	to	reading	route	parameters,	the		Router		service	returns	an	Observable	we	can
subscribe	to	to	read	the	query	parameters:

Passing	Optional	Parameters	to	a	Route

307

import	{	Component	}	from	'@angular/core';

import	{	ActivatedRoute,	Router	}	from	'@angular/router';

@Component({

		selector:	'product-list',

		template:	`<!--	Show	product	list	-->`

})

export	default	class	ProductList	{

		constructor(

				private	route:	ActivatedRoute,

				private	router:	Router)	{}

		ngOnInit()	{

				this.sub	=	this.route

						.queryParams

						.subscribe(params	=>	{

								//	Defaults	to	0	if	no	query	param	provided.

								this.page	=	+params['page']	||	0;

						});

		}

		ngOnDestroy()	{

				this.sub.unsubscribe();

		}

		nextPage()	{

				this.router.navigate(['product-list'],	{	queryParams:	{	page:	this.page	+	1	}	});

		}

}

View	Example

See	Official	Documentation	on	Query	Parameters

Passing	Optional	Parameters	to	a	Route

308

http://plnkr.co/edit/TJO3VuZNiweNPyc8eI2c?p=preview
https://angular.io/docs/ts/latest/guide/router.html#!#query-parameters

Using	Auxiliary	Routes
Angular	supports	the	concept	of	auxiliary	routes,	which	allow	you	to	set	up	and	navigate
multiple	independent	routes	in	a	single	app.	Each	component	has	one	primary	route	and
zero	or	more	auxiliary	outlets.	Auxiliary	outlets	must	have	unique	name	within	a	component.

To	define	the	auxiliary	route	we	must	first	add	a	named	router	outlet	where	contents	for	the
auxiliary	route	are	to	be	rendered.

Here's	an	example:

import	{Component}	from	'@angular/core';

@Component({

		selector:	'app',

		template:	`

				<nav>

						<a	[routerLink]="['/component-one']">Component	One

						<a	[routerLink]="['/component-two']">Component	Two

						<a	[routerLink]="[{	outlets:	{	'sidebar':	['component-aux']	}	}]">Component	Aux<

/a>

				</nav>

				<div	style="color:	green;	margin-top:	1rem;">Outlet:</div>

				<div	style="border:	2px	solid	green;	padding:	1rem;">

						<router-outlet></router-outlet>

				</div>

				<div	style="color:	green;	margin-top:	1rem;">Sidebar	Outlet:</div>

				<div	style="border:	2px	solid	blue;	padding:	1rem;">

						<router-outlet	name="sidebar"></router-outlet>

				</div>

		`

})

export	class	AppComponent	{

}

Next	we	must	define	the	link	to	the	auxiliary	route	for	the	application	to	navigate	and	render
the	contents.

<a	[routerLink]="[{	outlets:	{	'sidebar':	['component-aux']	}	}]">

		Component	Aux

Using	Auxiliary	Routes

309

View	Example

Each	auxiliary	route	is	an	independent	route	which	can	have:

its	own	child	routes
its	own	auxiliary	routes
its	own	route-params
its	own	history	stack

Using	Auxiliary	Routes

310

https://plnkr.co/edit/e5eK0ksB08GXzIRCyInr?p=preview

State	Management
For	larger	Angular	applications	with	a	lot	of	asynchronous	activity	and	where	there's	a	lot	of
state	that	is	being	shared	and	manipulated	across	multiple	components	and	modules,
managing	state	can	be	quite	challenging.	In	a	typical	application,	we're	managing	things	like:

Data	that	comes	from	the	server	and	whether	it's	pending	or	resulted	in	an	error
UI	state	like	toggles,	alerts	and	errors	messages
User	input,	such	as	form	submissions,	filters	and	search	queries
Custom	themes,	credentials	and	localization
Many	other	types	of	state

As	the	application	grows,	how	do	we	know	that	a	state	change	in	one	module	will
consistently	and	accurately	reflected	in	other	modules?	And	what	if	these	modifications
result	in	even	more	state	changes?	Eventually,	it	becomes	extremely	difficult	to	reason
about	what's	actually	happening	in	your	application,	and	be	a	large	source	of	bugs.

In	Angular,	there	are	3	main	ways	to	solve	this	problem.

1.	 Redux	using	@ngrx;
2.	 Redux	using	ng2-redux;	and
3.	 Angular	Services	and	RxJS.

State	Management

311

Redux	and	@ngrx

What	is	Redux?
Redux	is	an	application	state	manager	for	JavaScript	applications,	and	keeps	with	the	core
principles	of	the	Flux-architecture	by	having	a	unidirectional	data	flow	in	your	application.

Where	Flux	applications	traditionally	have	multiple	stores,	Redux	applications	have	only	one
global,	read-only	application	state.	This	state	is	calculated	by	"reducing"	over	a	collection	or
stream	of	actions	that	update	it	in	controlled	ways.

What	is	@ngrx?
Redux	state	managers	have	been	very	well	received	and	have	inspired	the	creation	of
@ngrx,	a	set	of	modules	that	implement	the	same	way	of	managing	state	as	well	as	some	of
the	middleware	and	tools	in	the	Redux	ecosystem.	@ngrx	was	created	to	be	used
specifically	with	Angular	and	RxJS,	as	it	leans	heavily	on	the	observable	paradigm.

We'll	describe	how	to	use	this	approach	in	an	application.

For	further	on	Redux	and	@ngrx	see	the	Further	reading	section

Redux	and	@ngrx

312

https://github.com/ngrx
https://github.com/Reactive-Extensions/RxJS

Adding	@ngrx	to	your	Project
In	your	console,	run	the	following	command	to	add	@ngrx	to	your	list	of	dependencies	in
	package.json	:

npm	install	@ngrx/core	@ngrx/store	--save

If	you	plan	on	using	the	@ngrx/effects	extensions	to	add	side-effect	capabilities,	then	also
run	the	following	command:

npm	install	@ngrx/effects	--save

Adding	@ngrx	to	your	Project

313

https://github.com/ngrx
https://github.com/ngrx/effects

Defining	your	Main	Application	State
When	building	an	application	using	Redux,	the	first	thing	to	think	about	is,	"What	state	do	I
want	to	store?"	It	is	generally	a	good	idea	to	capture	all	of	the	application's	state	so	that	it
can	be	accessible	from	anywhere	and	all	in	one	place	for	easy	inspection.

In	the	application	state,	we	store	things	like:

Data	received	through	API	calls
User	input
Presentation	state,	such	as	menu	and	button	toggles
Application	preferences
Internationalization	messages
Themes	and	other	customizable	areas	of	your	application

To	define	your	application	state,	use	an	interface	called		AppState		or		IAppState	,	depending
on	the	naming	conventions	used	on	your	project.

Here's	an	example:

app/models/appState.ts

export	interface	AppState	{

		readonly	colors:	Colors;

		readonly	localization:	Localization;

		readonly	login:	Login;

		readonly	projectList:	ProjectList;

		readonly	registration:	Registration;

		readonly	showMainNavigation:	boolean;

}

Note:	We're	using		readonly		to	ensure	compile-time	immutability,	and	it	provides	the
simplest	immutable	implementation	without	adding	more	dependencies	to	clutter	the
examples.	However,	feel	free	to	use	another	approach	on	your	project	that	makes
sense	for	your	team.

Defining	your	Main	Application	State

314

Example	Application
In	this	chapter,	you'll	be	creating	a	simple	counter	application	using	@ngrx.	Your	app	will
allow	users	to	increment	and	decrement	a	number	by	one,	as	well	as	reset	that	value	back
to	zero.	Here's	the		AppState		that	we'll	be	using	throughout	the	example:

app/models/appState.ts

import	{Counter}	from	'./counter';

export	interface	AppState	{

		readonly	counter:	Counter;

}

app/models/counter.ts

export	interface	Counter	{

		readonly	currentValue:	number;

}

It's	good	practice	to	declare	each	interface	in	its	own	file,	and	create	a	logical	directory
structure	if	you	have	seven	or	more	interfaces	used	by	your	application.

Example	Application

315

https://github.com/ngrx

Reading	your	Application	State	using
Selectors
To	read	your	application	state	in	Redux,	we	need	to	use	the		select()		method	on	@ngrx's
	Store		class.	This	method	creates	and	returns	an		Observable		that	is	bound	to	a	specific
property	in	your	application	state.

For	example,	here's	how	you	would	select	the		counter		object:

store.select('counter');	//	Returns	Observable<Counter>

And	to	fetch	the	counter's		currentValue	,	we	can	pass	in	a		string		array,	where	each	string
plucks	a	single	property	from	the	application	state	one	at	a	time	in	the	order	specified:

store.select(['counter',	'currentValue']);	//	Returns	Observable<number>

While		select()		allows	for	several	variations	of	strings	to	be	passed	in,	it	has	it's
shortcomings	-	namely	you	won't	actually	know	if	the	plucking	is	working	properly	until	you
execute	your	code.

Because	of	that,		select()		allows	you	to	select	values	using	functions	too,	which	makes
things	more	type-safe	and	your	selectors	will	be	more	refactorable	by	your	IDE.

store.select(appState	=>	appState.counter.currentValue);

Creating	a	Counter	Service
While	you	could	inject		Store		and	select	values	directly	in	your	Angular	components,	it's
considered	to	be	a	best	practice	to	wrap	this	functionality	into	separate	services.	This
approach	encapsulates	all	of	the	selection	logic	and	eliminates	any	duplication	where	the
selection	path	is	repeated	throughout	your	application.

Let's	tie	everything	together	by	building	out	a		CounterService		example:

app/services/counter.service.ts

Reading	your	Application	State	using	Selectors

316

https://github.com/ngrx/store

import	{Injectable}	from	'@angular/core';

import	{Store}	from	'@ngrx/store';

import	{Observable}	from	'rxjs/Observable';

import	{AppState}	from	'../models';

@Injectable()

export	class	CounterService	{

		constructor(private	store:	Store<AppState>)	{}

		getCurrentValue():	Observable<number>	{

				return	this.store.select(appState	=>	appState.counter.currentValue)

						.filter(Boolean);

		}

}

Because		select()		returns	an		Observable	,	the		getCurrentValue()		method	also	applies	a
	filter()		to	ensure	that	subscribers	do	not	receive	any	falsy	values.	This	greatly	simplifies
the	code	and	templates	in	your	components,	since	they	don't	have	to	repeatedly	consider
the	falsy	case	everywhere	the	value	is	used.

Reading	your	Application	State	using	Selectors

317

Actions
Redux	uses	a	concept	called	Actions,	which	describe	state	changes	to	your	application.
Redux	actions	are	simple	JSON	objects	that	implement	the		Action		interface	provided	by
@ngrx:

export	interface	Action	{

		type:	string;

		payload?:	any;

}

The		type		property	is	a	string	used	to	uniquely	identify	your	action	to	your	application.	It's	a
common	convention	to	use	lisp-case	(such	as		MY_ACTION),	however	you	are	free	to	use
whatever	casing	style	that	makes	to	your	team,	as	long	as	it's	consistent	across	the	project.

The		payload		property	provides	a	way	to	pass	additional	data	to	other	parts	of	Redux,	and
it's	entirely	optional.

Here	is	an	example:

const	loginSendAction:	Action	=	{

		type:	'LOGIN_SEND',

		payload:	{

				username:	'katie',

				password:	'35c0cd1ecbbb68c75498b83c4e79fe2b'

		}

};

Plain	objects	are	used	so	that	the	actions	are	serializable	and	can	be	replayable	into
the	application	state.	Even	if	your	actions	involve	asynchronous	logic,	the	final
dispatched	action	will	remain	a	plain	JSON	object.

To	simplify	action	creation,	you	can	create	a	factory	function	to	take	care	of	the	repeating
parts	within	your	application:

app/store/createAction.ts

import	{Action}	from	'@ngrx/store';

export	function	createAction(type,	payload?):	Action	{

		return	{	type,	payload	};

}

Actions

318

https://github.com/ngrx

The	resulting	creation	of	the		LOGIN_SEND		action	becomes	much	more	succinct	and	cleaner:

const	loginSendAction:	Action	=	createAction('LOGIN_SEND',	{

		username:	'katie',

		password:	'35c0cd1ecbbb68c75498b83c4e79fe2b'

});

Actions

319

Modifying	your	Application	State	by
Dispatching	Actions
Most	Redux	apps	have	a	set	of	functions,	called	"action	creators",	that	are	used	to	set	up
and	dispatch	actions.

In	Angular,	it's	convenient	to	define	your	action	creators	as		@Injectable()		services,
decoupling	the	dispatch,	creation	and	side-effect	logic	from	the		@Component		classes	in	your
application.

Synchronous	Actions
Here	is	a	simple	example:

app/store/counter/counter.actions.ts

Modifying	your	Application	State	by	Dispatching	Actions

320

import	{Injectable}	from	'@angular/core';

import	{Store}	from	'@ngrx/store';

import	{createAction}	from	'../createAction';

import	{AppState}	from	'../../models/appState';

@Injectable()

export	class	CounterActions	{

		static	INCREMENT	=	'INCREMENT';

		static	DECREMENT	=	'DECREMENT';

		static	RESET	=	'RESET';

		constructor(private	store:	Store<AppState>)	{

		}

		increment()	{

				this.store.dispatch(createAction(CounterActions.INCREMENT));

		}

		decrement()	{

				this.store.dispatch(createAction(CounterActions.DECREMENT));

		}

		reset()	{

				this.store.dispatch(createAction(CounterActions.RESET));

		}

}

As	you	can	see,	the	action	creators	are	simple	functions	that	dispatch		Action		objects
containing	more	information	that	describes	the	state	modification.

Asynchronous	Actions
This	"ActionCreatorService"	pattern	comes	in	handy	if	you	must	handle	asynchronous	or
conditional	actions	(users	of	react-redux	may	recognize	this	pattern	as	analogous	to	redux-
thunk	in	a	dependency-injected	world).

app/store/counter/counter.actions.ts

Modifying	your	Application	State	by	Dispatching	Actions

321

import	{Injectable}	from	'@angular/core';

import	{Store}	from	'@ngrx/store';

import	{createAction}	from	'../createAction';

import	{AppState}	from	'../../models/appState';

@Injectable()

export	class	CounterActions	{

		constructor(private	store:	Store<AppState>)	{

		}

		incrementIfOdd()	{

				this.store.select(appState	=>	appState.counter.currentValue)

						.take(1)

						.subscribe(currentValue	=>	{

								if	(currentValue	%	2	!==	0)	{

										this.store.dispatch(createAction(CounterActions.INCREMENT);

								}

						});

		}

		incrementAsync(timeInMs:	number	=	1000)	{

				this.delay(timeInMs).then(()	=>	this.store.dispatch(createAction(CounterActions.IN

CREMENT)));

		}

		private	delay(timeInMs:	number)	{

				return	new	Promise((resolve)	=>	{

						setTimeout(()	=>	resolve()	,	timeInMs);

				});

		}

}

In	the		incrementIfOdd()		action	creator,	we	create	a	one-time	subscription	to	the	counter's
	currentValue		in	the	application	state.	From	there,	we	check	to	see	if	it's	odd	before
dispatching	an	action.

In	the		incrementAsync()		action	creator,	we	are	delaying	the	actual	call	to		dispatch()	.	We
created	a		Promise		that	will	resolve	after	the	delay.	Once	the		Promise		resolves,	we	can
then	dispatch	an	action	to	increment	the	counter.

Actions	that	Depend	on	Other	Services

Modifying	your	Application	State	by	Dispatching	Actions

322

The	ActionCreatorService	pattern	becomes	necessary	in	cases	where	your	action	creators
must	use	other	Angular	services.	Consider	the	following		SessionActions		service	that
handles	a	remote	API	call:

import	{Injectable}	from	'@angular/core';

import	{Store}	from	'@ngrx/store';

import	{createAction}	from	'../createAction';

import	{AppState}	from	'../../models/appState';

@Injectable()

export	class	SessionActions	{

		static	LOGIN_USER_PENDING	=	'LOGIN_USER_PENDING';

		static	LOGIN_USER_SUCCESS	=	'LOGIN_USER_SUCCESS';

		static	LOGIN_USER_ERROR	=	'LOGIN_USER_ERROR';

		static	LOGOUT_USER	=	'LOGOUT_USER';

		constructor(

				private	store:	Store<AppState>,

				private	authService:	AuthService

)	{

		}

		loginUser(credentials:	any)	{

				this.store.dispatch(createAction(SessionActions.LOGIN_USER_PENDING));

				this.authService.login(credentials.username,	credentials.password)

						.then(result	=>	this.store.dispatch(createAction(SessionActions.LOGIN_USER_SUCCE

SS,	result)))

						.catch(()	=>	this.store.dispatch(createAction(SessionActions.LOGIN_USER_ERROR)))

;

		};

		logoutUser()	{

				this.store.dispatch(createAction(SessionActions.LOGOUT_USER));

		};

}

Modifying	your	Application	State	by	Dispatching	Actions

323

Review	of	Reducers	and	Pure	Functions
One	of	the	core	concepts	of	Redux	is	the	reducer.	A	reducer	is	a	function	with	the	signature
	(accumulator:	T,	item:	U)	=>	T	.	Reducers	are	often	used	in	JavaScript	through	the
	Array.reduce		method,	which	iterates	over	each	of	the	array's	items	and	accumulates	a
single	value	as	a	result.	Reducers	should	be	pure	functions,	meaning	they	don't	generate
any	side-effects.

A	simple	example	of	a	reducer	is	the	sum	function:

let	x	=	[1,	2,	3].reduce((sum,	number)	=>	sum	+	number,	0);

//	x	==	6

Reducers	and	Pure	Functions

324

Reducers	as	State	Management
Reducers	are	a	simple	idea	that	turns	out	to	be	very	powerful.	With	Redux,	you	replay	a
series	of	actions	into	the	reducer	and	get	your	new	application	state	as	a	result.

Reducers	in	a	Redux	application	should	not	mutate	the	state,	but	return	a	copy	of	it,	and	be
side-effect	free.	This	encourages	you	to	think	of	your	application	as	UI	that	gets	"computed"
from	a	series	of	actions	in	time.

Simple	Reducer
Let's	take	a	look	at	a	simple	counter	reducer.

app/store/counter/counter.reducer.ts

import	{Action}	from	'@ngrx/store';

import	{CounterActions}	from	'./counter.actions';

export	default	function	counterReducer(state:	number	=	0,	action:	Action):	number	{

		switch	(action.type)	{

				case	CounterActions.INCREMENT:

						return	state	+	1;

				case	CounterActions.DECREMENT:

						return	state	-	1;

				case	CounterActions.RESET:

						return	0;

				default:

						return	state;

		}

}

We	can	see	here	that	we	are	passing	in	an	initial	state	(the	current	number)	and	an		Action	.
To	handle	each	action,	a	common	approach	is	to	use	a		switch		statement.	Instead	of	each
reducer	needing	to	explicitly	subscribe	to	the	dispatcher,	every	action	gets	passed	into	each
reducer,	which	handles	the	actions	it's	interested	in	and	then	returns	the	new	state	along	to
the	next	reducer.

Reducers	should	be	side-effect	free.	This	means	that	they	should	not	modify	things	outside
of	their	own	scope.	They	should	simply	compute	the	next	application	state	as	a	pure	function
of	the	reducer's	arguments.

Reducers	as	State	Management

325

For	this	reason,	side-effect	causing	operations,	such	as	updating	a	record	in	a	database,
generating	an	id,	etc.	should	be	handled	elsewhere	in	the	application,	like	in	your	action
creators	or	using	@ngrx/effects.

Complex	Reducer
Another	consideration	when	creating	your	reducers	is	to	ensure	that	they	are	immutable	and
not	modifying	the	state	of	your	application.	If	you	mutate	your	application	state,	it	can	cause
unexpected	behavior.	There	are	a	few	ways	to	help	maintain	immutability	in	your	reducers.
One	way	is	by	using	new	ES6	features	such	as		Object.assign()		or	the	spread	operator	for
arrays.

app/models/counter.ts

//	...

export	function	setCounterCurrentValue(counter:	Counter,	currentValue:	number):	Counter

	{

		return	Object.assign({},	counter,	{	currentValue	});

}

//	...

Here,	the		setCounterCurrentValue()		function	creates	a	new		Counter		object	that	overwrites
the		counter.currentValue		property	with	a	new	value	while	maintaining	the	references	and
values	of	all	of	the	other	properties	from		counter	.

Let's	update	our	reducer	to	utilize	this	concept:

Reducers	as	State	Management

326

https://github.com/ngrx/effects

import	{Action}	from	'@ngrx/store';

import	{Counter,	createDefaultCounter,	setCounterCurrentValue}	from	'../../models/coun

ter';

import	{CounterActions}	from	'./counter.actions';

export	function	counterReducer(

		counter:	Counter	=	{	currentValue:	0	},	

		action:	Action

):	Counter	{

		switch	(action.type)	{

				case	CounterActions.INCREMENT:

						return	setCounterCurrentValue(counter,	counter.currentValue	+	1);

				case	CounterActions.DECREMENT:

						return	setCounterCurrentValue(counter,	counter.currentValue	-	1);

				case	CounterActions.RESET:

						return	setCounterCurrentValue(counter,	0);

				default:

						return	counter;

		}

}

With	each	action,	we	take	the	existing		counter		state	and	create	a	new	state	with	the
updated	value	(such	as		counter.currentValue	+	1).

When	dealing	with	complex	or	deeply	nested	objects,	it	can	be	difficult	to	maintain
immutability	in	your	application	using	this	syntax.	This	is	where	a	library	like	Ramda	can
help.

Reducers	as	State	Management

327

http://ramdajs.com/

Creating	your	Application's	Root	Reducer
@ngrx	allows	us	to	break	our	application	into	smaller	reducers	with	a	single	area	of	concern.
We	can	combine	these	reducers	by	creating	an	object	that	mirrors	the	application's
	AppState	,	where	each	property	will	point	to	one	of	those	smaller	reducers.

app/store/rootReducer.ts

import	{counterReducer}	from	'./counter/counter.reducer';

export	const	rootReducer	=	{

		counter:	counterReducer

};

Creating	your	Application's	Root	Reducer

328

https://github.com/ngrx

Configuring	your	application
Once	you	have	your	reducers	created,	it’s	time	to	configure	your	Angular	application.	In	your
main	application	module,	simple	add	the		StoreModule.provideStore()		call	to	your
	@NgModule	's	imports:

app/app.module.ts

import	{BrowserModule}	from	'@angular/platform-browser';

import	{NgModule}	from	'@angular/core';

import	{FormsModule}	from	'@angular/forms';

import	{HttpModule}	from	'@angular/http';

import	{StoreModule}	from	'@ngrx/store';

import	{EffectsModule}	from	'@ngrx/effects';

import	'rxjs/Rx';

import	{rootReducer}	from	'./store/rootReducer';

import	{CounterActions}	from	'./store/actions';

import	{CounterEffects}	from	'./store/effects';

import	{AppComponent,	CounterComponent}	from	'./components';

import	{CounterService}	from	'./services';

@NgModule({

		imports:	[

				BrowserModule,

				FormsModule,

				HttpModule,

				StoreModule.provideStore(rootReducer)

],

		declarations:	[

				AppComponent,

				CounterComponent

],

		providers:	[

				CounterActions,

				CounterService

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{

}

Configuring	your	Application

329

Configuring	your	Application

330

Implementing	Components
To	demonstrate	how	to	use	the		CounterService		in	your	components,	let's	start	by	building
out	a	small		CounterComponent	.	The	component	will	be	responsible	for	incrementing	and
decrementing	the	counter	by	one,	as	well	as	allowing	the	user	to	reset	the	counter	to	zero.

app/components/counter.component.ts

import	{Component,	Input}	from	'@angular/core';

import	{Observable}	from	'rxjs/Observable';

import	{CounterService}	from	'../services';

import	{CounterActions}	from	'../store/counter/counter.actions';

@Component({

		selector:	'counter',

		templateUrl:	'./counter.component.html'

})

export	class	CounterComponent	{

		private	currentValue$:	Observable<number>;

		constructor(

				counterService:	CounterService,

				public	actions:	CounterActions

)	{

				this.currentValue$	=	counterService.getCurrentValue();

		}

}

app/components/counter.component.html

<p>

		Clicked:	{{currentValue$	|	async}}	times

		<button	(click)="actions.increment()">+</button>

		<button	(click)="actions.decrement()">-</button>

		<button	(click)="actions.reset()">Reset</button>

</p>

The	template	syntax	should	be	familiar	by	now,	displaying	an		Observable		counter	value	with
the		async		pipe.	Any	time		appState.counter.currentValue		is	updated	by	a	reducer,
	currentValue$		will	receive	the	new	value	and		|	async		will	update	it	in	the	template.

Implementing	Components

331

The	component	also	handles	some	click	events.	Each	click	event	is	bound	to	expressions
that	call	our	action	creators	from	the		CounterActions		ActionCreatorService.

Implementing	Components

332

Component	Architecture
Our	previous		CounterComponent		example	is	called	a	smart	component	-	it	knew	about
Redux,	the	structure	of	the	state	and	the	actions	it	needed	to	call.	In	theory	you	can	drop	this
component	into	any	area	of	your	application	and	just	let	it	work,	but	it	will	be	tightly	bound	to
that	specific	slice	of	state	and	those	specific	actions.

For	example,	what	if	we	wanted	to	have	multiple	counters	tracking	different	things	on	the
page?	Or	how	about	counting	the	number	of	red	clicks	vs	blue	clicks?

To	help	make	components	more	generic	and	reusable,	it's	worth	trying	to	separate	them	into
container	components	and	presentational	components.

Container
Components Presentational	Components

Location Top	level,	route
handlers Middle	and	leaf	components

Aware	of
Redux Yes No

To	read	data Subscribe	to	Redux
state Read	state	from	@Input	properties

To	change
data Dispatch	Redux	actions Invoke	callbacks	from	@Output

properties

redux	docs

Keeping	this	in	mind,	let's	refactor	our		CounterComponent		to	be	a	presentational	component.

Modifying		AppComponent		to	become	a	smart
component
First,	let's	modify	our	top-level	application	component	to	use	the		CounterService		and
	CounterActions	,	just	as		CounterComponent		did:

app/app.component.ts

Component	Architecture

333

http://redux.js.org/docs/basics/UsageWithReact.html

import	{Component}	from	'@angular/core';

import	{Observable}	from	'rxjs';

import	{Counter}	from	'../../models/counter';

import	{CounterService}	from	'../../services/counter.service';

import	{CounterActions}	from	'../../store/counter/counter.actions';

@Component({

		selector:	'app-root',

		templateUrl:	'./app.component.html',

		styleUrls:	['./app.component.css']

})

export	class	AppComponent	{

		counter$:	Observable<Counter>;

		constructor(

				counterService:	CounterService,

				public	actions:	CounterActions

)	{

				this.counter$	=	counterService.getCounter();

		}

}

Now	our		AppComponent		is	a	smart-component,	because	it's	aware	of	Redux,	it's	presence	in
the	application	state	and	the	underlying	services.	As	with	previous	examples,	we	can	use
the		async		pipe	to	obtain	the	most	recent		counter		value	and	pass	it	along	to	other
components	within	the	template.

And	while	we	haven't	looked	at	the		@Output()	's	on		CounterComponent		just	yet,	we'll	want	to
delegate	those	events	to	our	action	creators	in		CounterActions	.

app/app.component.html

<counter	[counter]="counter$	|	async"

									(onIncrement)="actions.increment()"

									(onDecrement)="actions.decrement()"

									(onReset)="actions.reset()">

</counter>

Modifying		CounterComponent		to	become	a
presentation	component

Component	Architecture

334

In	turn,	we	need	to	make	the		CounterComponent		from	a	smart	component	into	a	dumb
component.	For	this,	we	will	pass	the	data	into	the	component	using		@Input		properties	and
click	events	using		@Output()		properties,	removing	the	use	of		CounterService		and
	CounterActions		entirely.

app/counter/counter.component.ts

import	{Component,	Input,	EventEmitter,	Output}	from	'@angular/core';

import	{Counter}	from	'../../models/counter';

@Component({

		selector:	'counter',

		templateUrl:	'./counter.component.html'

})

export	class	CounterComponent	{

		@Input()

		counter:	Counter;

		@Output()

		onIncrement:	EventEmitter<void>	=	new	EventEmitter<void>();

		@Output()

		onDecrement:	EventEmitter<void>	=	new	EventEmitter<void>();

		@Output()

		onReset:	EventEmitter<void>	=	new	EventEmitter<void>();

}

Our	child	components	become	much	simpler	and	testable,	because	we	don't	have	to	use	the
	async		pipe	to	work	with	our	state,	which	removes	a	lot	of	pain	when	dealing	with	lots	of
	@Input	's	or	the	need	to	use	complex	expressions	with		Observable	's.

We	can	also	now	simply	use	core	Angular	features	to	emit	values	whenever	a	click	event
happens:

app/counter/counter.component.html

<p>

		Clicked:	{{counter.currentValue}}	times

		<button	(click)="onIncrement.emit()">+</button>

		<button	(click)="onDecrement.emit()">-</button>

		<button	(click)="onReset.emit()">Reset</button>

</p>

Component	Architecture

335

We	now	have	a	nicely-reusable	presentational	component	with	no	knowledge	of	Redux	or
our	application	state.

Component	Architecture

336

Side	Effects
Often	times,	we	need	to	perform	some	logic	after	an	action	has	been	dispatched	and	the
store	has	been	updated.	Because	reducers	should	be	side-effect	free,	we	need	a	way	to
handle	these	side-effects.	Sometimes	we	can	put	this	logic	with	our	action	creator	services,
and	that	works	for	simple	cases,	but	often	times	the	same	block	of	logic	needs	to	run	in
response	to	multiple	action	types.

@ngrx	offers	a	library	called	@ngrx/effects	to	solve	these	problems.

Creating	your	first	effects	service
Let's	say	we	have	an	application	that	supports	customizable	themes	and	other
customization	options.	To	support	this	functionality,	we'll	need	to	fetch	these	customizations
from	the	server	whenever	a	user	logs	into	the	application.

Let's	build	out	a		CustomizationEffects		service	to	accomplish	this:

Side	Effects

337

https://github.com/ngrx
https://github.com/ngrx/effects

import	{Injectable}	from	'@angular/core';

import	{Action}	from	'@ngrx/store';

import	{Actions,	Effect}	from	'@ngrx/effects';

import	{Observable}	from	'rxjs/Observable';

import	{createAction}	from	'../createAction';

import	{CustomizationActions,	SessionActions}	from	'../session/session.actions.ts';

import	{ApiService}	from	'../../services';

@Injectable()

export	class	CustomizationEffects	{

		constructor(

				private	actions$:	Actions,

				private	apiService:	ApiService

)	{

		}

		@Effect()

		login$	=	this.actions$

				.ofType(SessionActions.LOGIN_SEND_SUCCESS)

				.mergeMap<Action>(action	=>	this.apiService.getCustomizations(action.payload.userI

d)

						.map(result	=>	createAction(CustomizationActions.CUSTOMIZATIONS_RETRIEVE_SUCCESS

,	result.json()))

						.catch(error	=>	Observable.of(createAction(CustomizationActions.CUSTOMIZATIONS_R

ETRIEVE_ERROR,	error.json())))

);

}

@ngrx/effects	provides	an	Angular		actions$		service	(which	is	also	an		Observable)	to	emit
every	action	that	has	been	dispatched	by	your	application	in	a	single	stream.	Its		ofType()	
method	can	be	used	to	filter	the	one	or	more	actions	we're	interesting	in	before	adding	a
side-effect.

In	this	example,	when	the		LOGIN_SEND_SUCCESS		action	occurs	from	anywhere	in	the
application,	we	make	a	request	to	the	server	to	fetch	the	user's	customizations	given	their
	userId	,	which	has	been	attached	to	the	payload	of	this	action.	Regardless	if	this	requests
succeeds	or	fails,	we	need	to	create	and	return	an		Observable		that	is	bound	to	the	new
action	we'd	like	Redux	to	perform,	such	as	storing	the	customizations	when	the	request	is
successful,	or	processing	the	error	returned	by	the	server	if	there's	an	error.

To	tell	@ngrx/effects	which		Observable		objects	are	side-effects	to	associate	them	with
Redux,	we	need	to	provide	a	hint	using	the		@Effect()		decorator.	Without	it,	your	side-effect
will	not	run.

Side	Effects

338

https://github.com/ngrx/effects
https://github.com/ngrx/effects

Configuring	your	effects	service
Lastly,	we	just	need	to	add	the		CustomizationEffects		service	as	a	module	to	the
	@NgModule	's	imports	to	start	the	effects:

//	...

import	{EffectsModule}	from	'@ngrx/effects';

import	{CustomizationEffects}	from	'./store/customization/customization.effects';

@NgModule({

		imports:	[

				//	...

				EffectsModule.run(CustomizationEffects)

],

		//	...

})

export	class	AppModule	{	}

Side	Effects

339

Getting	more	from	Redux	and	@ngrx

Redux
Redux	has	a	number	of	tools	and	middleware	available	in	its	ecosystem	to	facilitate	elegant
app	development.

Redux	DevTools	-	a	tool	that	displays	a	linear	timeline	of	actions	that	have	interacted
with	its	store.	Allows	for	replaying	actions	and	error	handling
redux-thunk	-	middleware	that	enables	lazy	evaluation	of	actions
redux-observable	-	an	RxJS-based	model	for	handling	side-effects	on	action	streams.
*ng2-redux-router	-	reactive	glue	between	the	Angular	router	and	your	redux	store.

@ngrx
@ngrx	provides	most	of	its	Redux	implementation	through	the	ngrx/store	module.	Other
modules	are	available	for	better	integration	and	development.

ngrx/store-devtools	-	an	ngrx	implementation	of	the	Redux	DevTools
ngrx/effects	-	a	model	for	performing	side-effects	similar	to		redux-saga	
ngrx/router	and	ngrx/router-store	-	a	router	for	Angular	that	can	be	connected	to	your
ngrx	store

Getting	More	From	Redux	and	@ngrx

340

https://github.com/gaearon/redux-devtools
https://github.com/gaearon/redux-thunk
https://github.com/redux-observable/redux-observable
https://github.com/dagstuan/ng2-redux-router
https://github.com/ngrx/store
https://github.com/ngrx/store-devtools
https://github.com/ngrx/effects
https://github.com/ngrx/router
https://github.com/ngrx/router-store

TDD	Testing
Test-Driven-Development	is	an	engineering	process	in	which	the	developer	writes	an	initial
automated	test	case	that	defines	a	feature,	then	writes	the	minimum	amount	of	code	to	pass
the	test	and	eventually	refactors	the	code	to	acceptable	standards.

A	unit	test	is	used	to	test	individual	components	of	the	system.	An	integration	test	is	a	test
which	tests	the	system	as	a	whole,	and	how	it	will	run	in	production.

Unit	tests	should	only	verify	the	behavior	of	a	specific	unit	of	code.	If	the	unit's	behavior	is
modified,	then	the	unit	test	would	be	updated	as	well.	Unit	tests	should	not	make
assumptions	about	the	behavior	of	other	parts	of	your	codebase	or	your	dependencies.
When	other	parts	of	your	codebase	are	modified,	your	unit	tests	should	not	fail.	(Any	failure
indicates	a	test	that	relies	on	other	components	and	is	therefore	not	a	unit	test.)	Unit	tests
are	cheap	to	maintain	and	should	only	be	updated	when	the	individual	units	are	modified.
For	TDD	in	Angular,	a	unit	is	most	commonly	defined	as	a	class,	pipe,	component,	or
service.	It	is	important	to	keep	units	relatively	small.	This	helps	you	write	small	tests	which
are	"self-documenting",	where	they	are	easy	to	read	and	understand.

TDD	Testing

341

The	Testing	Toolchain
Our	testing	toolchain	will	consist	of	the	following	tools:

Jasmine
Karma
Phantom-js
Istanbul
Sinon
Chai

Jasmine	is	the	most	popular	testing	framework	in	the	Angular	community.	This	is	the	core
framework	that	we	will	write	our	unit	tests	with.

Karma	is	a	test	automation	tool	for	controlling	the	execution	of	our	tests	and	what	browser	to
perform	them	under.	It	also	allows	us	to	generate	various	reports	on	the	results.	For	one	or
two	tests	this	may	seem	like	overkill,	but	as	an	application	grows	larger	and	the	number	of
units	to	test	grows,	it	is	important	to	organize,	execute	and	report	on	tests	in	an	efficient
manner.	Karma	is	library	agnostic	so	we	could	use	other	testing	frameworks	in	combination
with	other	tools	(like	code	coverage	reports,	spy	testing,	e2e,	etc.).

In	order	to	test	our	Angular	application	we	must	create	an	environment	for	it	to	run	in.	We
could	use	a	browser	like	Chrome	or	Firefox	to	accomplish	this	(Karma	supports	in-browser
testing),	or	we	could	use	a	browser-less	environment	to	test	our	application,	which	can	offer
us	greater	control	over	automating	certain	tasks	and	managing	our	testing	workflow.
PhantomJS	provides	a	JavaScript	API	that	allows	us	to	create	a	headless	DOM	instance
which	can	be	used	to	bootstrap	our	Angular	application.	Then,	using	that	DOM	instance	that
is	running	our	Angular	application,	we	can	run	our	tests.

Istanbul	is	used	by	Karma	to	generate	code	coverage	reports,	which	tells	us	the	overall
percentage	of	our	application	being	tested.	This	is	a	great	way	to	track	which
components/services/pipes/etc.	have	tests	written	and	which	don't.	We	can	get	some	useful
insight	into	how	much	of	the	application	is	being	tested	and	where.

For	some	extra	testing	functionality	we	can	use	the	Sinon	library	for	things	like	test	spys,	test
subs	and	mock	XHR	requests.	This	is	not	necessarily	required	as	Jasmine	comes	with	the
	spyOn		function	for	incorporating	spy	tests.

Chai	is	an	assertion	library	that	can	be	paired	with	any	other	testing	framework.	It	offers
some	syntactic	sugar	that	lets	us	write	our	unit	tests	with	different	verbiage	-	we	can	use	a
should,	expect	or	assert	interface.	Chai	also	takes	advantage	of	"function	chaining"	to	form

The	Testing	Toolchain

342

http://jasmine.github.io/
https://karma-runner.github.io/
http://phantomjs.org/
https://gotwarlost.github.io/istanbul/
http://sinonjs.org/
http://Chaijs.com/

English-like	sentences	used	to	describe	tests	in	a	more	user	friendly	way.	Chai	isn't	a
required	library	for	testing	and	we	won't	explore	it	much	more	in	this	handout,	but	it	is	a
useful	tool	for	creating	cleaner,	more	well-written	tests.

The	Testing	Toolchain

343

Test	Setup
The	repo	angular2-redux-starter	is	a	basic	webpack-based	Angular	application	(with	Redux)
with	the	same	testing	toolchain	outlined	above.	Let's	take	a	look	at	how	this	project	is	set	up.

Test	Setup

344

https://github.com/rangle/angular2-redux-starter

Filename	Conventions
Each	unit	test	is	put	into	its	own	separate	file.	The	Angular	team	recommends	putting	unit
test	scripts	alongside	the	files	they	are	testing	and	using	a		.spec		filename	extension	to
mark	it	as	a	testing	script	(this	is	a	Jasmine	convention).	So	if	you	had	a	component
	/app/components/mycomponent.ts	,	then	your	unit	test	for	this	component	would	be	in
	/app/components/mycomponent.spec.ts	.	This	is	a	matter	of	personal	preference;	you	can	put
your	testing	scripts	wherever	you	like,	though	keeping	them	close	to	your	source	files	makes
them	easier	to	find	and	gives	those	who	aren't	familiar	with	the	source	code	an	idea	of	how
that	particular	piece	of	code	should	work.

Filename	Conventions

345

Karma	Configuration
Karma	is	the	foundation	of	our	testing	workflow.	It	brings	together	our	other	testing	tools	to
define	the	framework	we	want	to	use,	the	environment	to	test	under,	the	specific	actions	we
want	to	perform,	etc.	In	order	to	do	this	Karma	relies	on	a	configuration	file	named	by	default
karma.conf.js.

You	can	seed	a	new	configuration	file	though	the		karma	init		command,	which	will	guide
you	through	a	few	basic	questions	to	get	a	bare	minimum	setup	running.

Overview
The	configuration	file	is	put	together	by	exporting	a	function	that	accepts	the	configuration
object	that	Karma	is	going	to	work	with.	Modifying	certain	properties	on	this	object	will	tell
Karma	what	it	is	we	want	to	do.	Let's	go	over	some	of	the	key	properties	used	in	this
configuration	file:

module.exports	=	(config)	=>	{

		const	coverage	=	config.singleRun	?	['coverage']	:	[];

		config.set({

				frameworks:	[...],

				plugins:	[...],

				files:	[...],

				preprocessors:	{	...	},

				webpack:	{	...	},

				reporters:	[...],

				coverageReporter:	{	...	},

				port:	9999,

				browsers:	['Chrome'],	//	Alternatively:	'PhantomJS'

				colors:	true,

				logLevel:	config.LOG_INFO,

				autoWatch:	true,

				captureTimeout:	6000,

		});

};

frameworks

Karma	Configuration

346

frameworks:	[

		'jasmine',

],

	frameworks		is	a	list	of	the	testing	frameworks	we	want	to	use.	These	frameworks	must	be
installed	through	NPM	as	a	dependency	in	our	project	or/and	as	a	Karma	plugin.

plugins

plugins:	[

		'karma-jasmine',

		'karma-webpack',

		'karma-coverage',

		'karma-remap-istanbul',

		'karma-chrome-launcher',

],

Plugins	that	integrate	karma	with	testing	frameworks	like	Jasmine	or	build	systems	like
Webpack.

files

files:	[

		'./src/tests.entry.ts',

		{

				pattern:	'**/*.map',

				served:	true,

				included:	false,

				watched:	true,

		},

],

	files		is	a	list	of	files	to	be	loaded	into	the	browser/testing	environment.	These	are	loaded
sequentially,	so	order	matters.	The	file	list	can	also	take	the	form	of	a	glob	pattern	as	it
becomes	rather	tedious	to	manually	add	in	a	new	file	for	each	new	testing	script	created.

In	the	angular2-redux-starter	karma.conf.js	we	have	put	the	testing	files	we	wish	to	include	in
a	separate	file	-	src/tests.entry.ts,	which	includes	a		require		call	using	a	regex	pattern	for
importing	files	with	the	.spec.ts	file	extension.	As	a	project	grows	larger	and	the	number	of
files	to	include	grows	in	complexity	it	is	good	practice	to	put	file	imports	in	a	separate	file	-
this	keeps	the	karma.conf.js	file	cleaner	and	more	readable.	Here	is	what	our
src/tests.entry.ts	looks	like:

Karma	Configuration

347

let	testContext	=	(<{	context?:	Function	}>require).context('./',	true,	/\.test\.ts/);

testContext.keys().forEach(testContext);

preprocessors

preprocessors:	{

		'./src/tests.entry.ts':	[

				'webpack',

				'sourcemap',

],

		'./src/**/!(*.test|tests.*).(ts|js)':	[

				'sourcemap',

],

}

	preprocessors		allow	for	some	operation	to	be	performed	on	the	contents	of	a	unit	testing
file	before	it	is	executed.	These	operations	are	carried	out	through	the	use	of	Karma	plugins
and	are	often	used	for	transpiling	operations.	Since	we	are	writing	unit	tests	in	TypeScript,
.ts	files	must	be	transpiled	into	plain	Javascript	in	order	to	run	in	a	browser-based
environment.

In	angular2-redux-starter	this	process	is	done	with	webpack,	so	we	explicitly	invoke	the
	webpack		processor	on	all	of	our	testing	files	(those	ending	with	.spec.ts).	We	also	load	any
source	map	files	originating	from	transpilation	through	the		sourcemap		processor.

webpack

Karma	Configuration

348

	webpack:	{

		plugins,

		entry:	'./src/tests.entry.ts',

		devtool:	'inline-source-map',

		resolve:	{

				extensions:	['.webpack.js',	'.web.js',	'.ts',	'.js'],

		},

		module:	{

				rules:

						combinedLoaders().concat(

								config.singleRun

										?	[loaders.istanbulInstrumenter]

										:	[]),

		},

		stats:	{	colors:	true,	reasons:	true	},

},

webpackServer:	{

		noInfo:	true,	//	prevent	console	spamming	when	running	in	Karma!

}

If	the	project	uses	webpack,	then	the	property		webpack		in	the	Karma	configuration	object	is
where	we	can	configure	webpack	with	Karma.	In	the	angular2-redux-starter,	plugins	and
loaders	are	exported	from	their	own	files	to	be	imported	by	both	the	webpack	config	and	the
karma	config,	making	the	configuration	object	smaller.

Using	webpack,	we	can	configure	how	to	bundle	our	unit	tests;	that	is,	whether	to	pack	all
tests	into	a	single	bundle,	or	each	unit	test	in	its	own	bundle,	etc.	Regardless,	unit	tests
should	not	be	bundled	with	the	rest	of	the	applications	code	(especially	in	production!).	In
angular2-redux-starter	we	have	opted	to	bundle	all	unit	tests	together.

coverageReporters	and	reporters

Karma	Configuration

349

reporters:	['spec']

		.concat(coverage)

		.concat(coverage.length	>	0	?	['karma-remap-istanbul']	:	[]),

remapIstanbulReporter:	{

		src:	'coverage/chrome/coverage-final.json',

		reports:	{

				html:	'coverage',

		},

},

coverageReporter:	{

		reporters:	[

				{	type:	'json'	},

],

		dir:	'./coverage/',

		subdir:	(browser)	=>	{

				return	browser.toLowerCase().split(/[/-]/)[0];	//	returns	'chrome'

		},

},

	coverageReporter		is	used	to	configure	the	output	of	results	of	our	code	coverage	tool	(our
toolchain	uses	Istanbul).	Here	we	have	specified	to	output	the	results	in	JSON	and	HTML.
Reports	will	appear	in	the	coverage/	folder.

	reporters		is	a	list	of	reporters	to	use	in	the	test	cycle.	Reporters	can	be	thought	of	as
modular	tools	used	to	report	on	some	aspect	of	the	testing	routine	outside	of	the	core	unit
tests.	Code	coverage	is	an	example	of	a	reporter	-	we	want	it	to	report	on	how	much	of	our
code	is	being	tested.	There	are	many	more	reporters	available	for	Karma	that	can	aid	in
crafting	your	testing	workflow.

Environment	configuration

port:	9999,

browsers:	['Chrome'],	//	Alternatively:	'PhantomJS'

colors:	true,

logLevel:	config.LOG_INFO,

autoWatch:	true,

captureTimeout:	6000,

	port	,		browsers		and		singleRun		configure	the	environment	our	unit	tests	will	run	under.
The		browsers		property	specifies	which	browser	we	want	Karma	to	launch	and	capture
output	from.	We	can	use	Chrome,	Firefox,	Safari,	IE	or	Opera	(requires	additional	Karma
launcher	to	be	installed	for	each	respective	browser).	For	a	browser-less	DOM	instance	we
can	use	PhantomJS	(as	outlined	in	the	toolchain	section).

Karma	Configuration

350

https://www.npmjs.com/browse/keyword/karma-reporter

We	can	also	manually	capture	output	from	a	browser	by	navigating	to
	http://localhost:port	,	where	port	is	the	number	specified	in	the		port		property	(the
default	value	is	9876	if	not	specified).	The	property		singleRun		controls	how	Karma
executes,	if	set	to		true	,	Karma	will	start,	launch	configured	browsers,	run	tests	and	then
exit	with	a	code	of	either		0		or		1		depending	on	whether	or	not	all	tests	passed.

Completed	Configuration
The	net	result	of	customizing	all	of	these	proprties	is	the	karma.conf.js	file	in	angular-redux-
starter.

Additional	Resources
This	is	just	a	sample	of	the	core	properties	in	karma.conf.js	being	used	by	angular2-redux-
starter	project.	There	are	many	more	properties	that	can	be	used	to	extend	and	configure
the	functionality	of	Karma	-	take	a	look	at	the	official	documentation	for	the	full	API
breakdown.

Karma	Configuration

351

https://github.com/rangle/angular2-redux-example/blob/master/karma.conf.js
http://karma-runner.github.io/0.13/config/configuration-file.html

TestBed	Configuration	(Optional)
As	you	will	see	in	Testing	Components,	real-world	component	testing	often	relies	on	the
Angular2	testing	utility		TestBed	,	which	requires	some	configuration.	Most	significantly,	we
need	to	use		TestBed.initTestEnvironment		to	create	a	testing	platform	before	we	can	use
unit	tests	with		TestBed	.	This	testing	environment	would	have	to	be	created,	destroyed	and
reset	as	appropriate	before	every	unit	test.

In	the	angular2-redux-starter,	this	configuration	is	done	in	a		tests.configure.ts		file	and
imported	into	every	unit	test	for	easy	re-use.

import	{

		getTestBed,

		ComponentFixtureAutoDetect,

		TestBed,

}	from	'@angular/core/testing';

import	{

		BrowserDynamicTestingModule,

		platformBrowserDynamicTesting,

}	from	'@angular/platform-browser-dynamic/testing';

export	const	configureTests	=	(configure:	(testBed:	TestBed)	=>	void)	=>	{

		const	testBed	=	getTestBed();

		if	(testBed.platform	==	null)	{

				testBed.initTestEnvironment(

						BrowserDynamicTestingModule,

						platformBrowserDynamicTesting());

		}

		testBed.configureCompiler({

						providers:	[

								{provide:	ComponentFixtureAutoDetect,	useValue:	true},

]

				});

		configure(testBed);

		return	testBed.compileComponents().then(()	=>	testBed);

};

	tests.configure.ts		creates	the	testing	platform	if	it	doesn't	already	exist,	compiles	the
template,	and	exports		configureTests		which	can	then	be	imported	and	used	in	our	unit
tests.

TestBed	Configuration	(Optional)

352

https://github.com/rangle/angular2-redux-example/blob/master/src/tests.configure.ts

Here's	a	look	at	how	it	would	be	used:

import	{	TestBed	}	from	'@angular/core/testing';

import	{	ExampleComponent	}	from	'./index';

import	{	configureTests	}	from	'../../tests.configure';

import	{	AppModule	}	from	'../../modules/app.module';

describe('Component:	Example',	()	=>	{

		let	fixture;

		beforeEach(done	=>	{

				const	configure	=	(testBed:	TestBed)	=>	{

						testBed.configureTestingModule({

								imports:	[AppModule],

						});

				};

				configureTests(configure).then(testBed	=>	{

						fixture	=	testBed.createComponent(ExampleComponent);

						fixture.detectChanges();

						done();

				});

		});

TestBed	Configuration	(Optional)

353

Typings
Since	our	project	and	unit	tests	are	written	in	TypeScript,	we	need	type	definitions	for	the
libraries	we'll	be	writing	our	tests	with	(Chai	and	Jasmine).	In	angular2-redux-example	we
have	included	these	type	definitions	from		@types	.

If	you're	following	the	example	of	angular2-redux-starter	and	using	a		tests.entry		file	to
specify	your	project	testing	requirements,	bear	in	mind	you'll	also	need	to	add	node	typings
to	your	dependencies.

Typings

354

https://github.com/rangle/angular2-redux-example

Executing	Test	Scripts
Our	entire	testing	workflow	is	done	through	Karma.	Run	the	command		karma	start		to
kickstart	Karma	into	setting	up	the	testing	environment,	running	through	each	unit	test	and
executing	any	reporters	we	have	set	up	in	the	karma.config.js	configuration	file.	In	order	to
run	Karma	through	the	command	line	it	must	be	installed	globally	(npm	install	karma	-g).

A	good	practice	is	to	amalgamate	all	the	project's	task/build	commands	through	npm.	This
gives	continuity	to	your	build	process	and	makes	it	easier	for	people	to	test/run	your
application	without	knowing	your	exact	technology	stack.	In	package.json	the		scripts		field
holds	an	object	with	key-value	pairing,	where	the	key	is	the	alias	for	the	command	and	the
value	is	the	command	to	be	executed.

...

"scripts":	{

				"test":	"karma	start",

				...

}

...

Now	running		npm	test		will	start	Karma.	Below	is	the	output	of	our	Karma	test.	As	you	can
see	we	had	one	test	that	passed,	running	in	a	Chrome	48	browser.

Figure:	image

Executing	Test	Scripts

355

Simple	Test
To	begin,	let's	start	by	writing	a	simple	test	in	Jasmine.

describe('Testing	math',	()	=>	{

		it('multiplying	should	work',	()	=>	{

				expect(4	*	4).toEqual(16);

		});

});

Though	this	test	may	be	trivial,	it	illustrates	the	basic	elements	of	a	unit	test.	We	explain
what	this	test	is	for	by	using		describe	,	and	we	use		it		to	assert	what	kind	of	result	we	are
expecting	from	our	test.	These	are	user-defined	so	it's	a	good	idea	to	be	as	descriptive	and
accurate	in	these	messages	as	possible.	Messages	like	"should	work",	or	"testing	service"
don't	really	explain	exactly	what's	going	on	and	may	be	confusing	when	running	multiple
tests	across	an	entire	application.

Our	actual	test	is	basic,	we	use		expect		to	formulate	a	scenario	and	use		toEqual		to	assert
the	resulting	condition	we	are	expecting	from	that	scenario.	The	test	will	pass	if	our	assertion
is	equal	to	the	resulting	condition,	and	fail	otherwise.	You	always	want	your	tests	to	pass	-
do	not	write	tests	that	have	the	results	you	want	in	a	failed	state.

Simple	Test

356

Using	Chai
Chai	is	an	assertion	library	with	some	tasty	syntax	sugar	that	can	be	paired	with	any	other
testing	framework.	It	lets	us	write	tests	in	a	TDD	(Test	Driven	Development)	style	or	BDD
(Behavior	Driven	Development)	style.	We	already	know	what	TDD	is	(read	the	intro!),	so
what	exactly	is	BDD?	Well	BDD	is	the	combination	of	using	TDD	with	natural	language
constructs	(English-like	sentences)	to	express	the	behavior	and	outcomes	of	unit	tests.
Jasmine	already	uses	a	TDD	style,	so	we'll	be	using	Chai	for	its	BDD	interfaces,	mainly
through	the	use	of		should		and		expect	.

describe('Testing	math',	()	=>	{

		it('multiplying	should	work',	()	=>	{

				let	testMe	=	16;

				//	Using	the	expect	interface

				chai.expect(testMe).to.be.a('number');

				chai.expect(testMe).to.equal(16);

				//	Using	the	should	interface

				chai.should();

				testMe.should.be.a('number');

				testMe.should.equal(16);

		});

});

The		expect		and		should		interface	both	take	advantage	of	chaining	to	construct	English-like
sentences	for	describing	tests.	Once	you've	decided	on	a	style	you	should	maintain	that
style	for	all	your	other	tests.	Each	style	has	its	own	unique	syntax;	refer	to	the
documentation	for	that	specific	API.

Using	Chai

357

http://Chaijs.com/guide/styles/

Testing	Components
Testing	Angular	components	requires	some	insight	into	the	Angular		@angular/core/testing	
module.	Though	many	features	of	Jasmine	are	used	in	Angular’s	testing	module	there	are
some	very	specific	wrappers	and	routines	that	Angular	requires	when	testing	components.

Testing	Components

358

Verifying	Methods	and	Properties
We	can	test	the	properties	and	methods	of	simple	Angular	components	fairly	easily	-	after
all,	Angular	components	are	simple	classes	that	we	can	create	and	interface	with.	Say	we
had	a	simple	component	that	kept	a	defined	message	displayed.	The	contents	of	the
message	may	be	changed	through	the		setMessage		function,	and	the		clearMessage		function
would	put	an	empty	message	in	place.	This	is	a	very	trivial	component	but	how	would	we
test	it?

message.component.ts

import	{Component}	from	'@angular/core';

@Component({

		selector:	'display-message',

		template:	'<h1>{{message}}</h1>'

})

export	class	MessageComponent	{

		public	message:	string	=	'';

		constructor()	{}

		setMessage(newMessage:	string)	{

						this.message	=	newMessage;

		}

		clearMessage()	{

				this.message	=	'';

		}

}

Now	for	our	unit	test.	We'll	create	two	tests,	one	to	test	the		setMessage		function	to	see	if	the
new	message	shows	up	and	another	to	test	the		clearMessage		function	to	see	if	clearing	the
message	works	as	expected.

message.spec.ts

Verifying	Methods	and	Properties

359

import	{MessageComponent}	from	'./message.component';

describe('Testing	message	state	in	message.component',	()	=>	{

		let	app:	MessageComponent;

		beforeEach(()	=>	{

				app	=	new	MessageComponent();

		});

		it('should	set	new	message',	()	=>	{

				app.setMessage('Testing');

				expect(app.message).toBe('Testing');

		});

		it('should	clear	message',	()	=>	{

				app.clearMessage();

				expect(app.message).toBe('');

		});

});

View	Example

We	have	created	two	tests:	one	for		setMessage		and	the	other	for		clearMessage	.	In	order	to
call	those	functions	we	must	first	initialize	the		MessageComponent		class.	This	is	accomplished
by	calling	the		beforeEach		function	before	each	test	is	performed.

Once	our		MessageComponent		object	is	created	we	can	call		setMessage		and		clearMessage	
and	analyze	the	results	of	those	actions.	We	formulate	an	expected	result,	and	then	test	to
see	if	the	result	we	were	expecting	came	to	be.	Here	we	are	testing	whether	or	not	the
message	we	tried	to	set	modified	the		MessageComponent		property		message		to	the	value	we
intended.	If	it	did,	then	the	test	was	successful	and	our		MessageComponent		works	as
expected.

Verifying	Methods	and	Properties

360

http://plnkr.co/edit/XUM8Gfz08nfbQf1BhDN1?p=preview

Injecting	Dependencies	and	DOM	Changes
In	the	previous	example	the	class	we	were	testing,		MessageComponent	,	did	not	have	any
injected	dependencies.	In	Angular,	components	will	often	rely	on	services	and	other	classes
(pipes/providers/etc.)	to	function,	which	will	be	injected	into	the	constructor	of	the
components	class.	When	testing	these	components	we	have	to	inject	the	dependencies
ourselves.	Since	this	is	an	Angular-specific	routine,	there	are	no	pure	Jasmine	functions
used	to	accomplish	this.	Angular	provides	a	multitude	of	functions	in		@angular/core/testing	
that	allows	us	to	to	effectively	test	our	components.	Let's	take	a	look	at	a	basic	component:

quote.component.ts

import	{	QuoteService	}	from	'./quote.service';

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'my-quote',

		template:	'<h3>Random	Quote</h3>	<div>{{quote}}</div>'

})

export	class	QuoteComponent	{

		quote:	string;

		constructor(private	quoteService:	QuoteService){};

		getQuote()	{

				this.quoteService.getQuote().then((quote)	=>	{

						this.quote	=	quote;

				});

		};

}

This	component	relies	on	the		QuoteService		to	get	a	random	quote,	which	it	will	then	display.
The	class	is	pretty	simple	-	it	only	has	the		getQuote		function	that	will	modify	the	DOM,
therefore	it	will	be	our	main	area	of	focus	in	testing.

In	order	to	test	this	component	we	need	initiate	the		QuoteComponent		class.	The	Angular
testing	library	offers	a	utility	called		TestBed	.	This	allows	us	to	configure	a	testing	module
where	we	can	provided	mocked	dependencies.	Additionally	it	will	create	the	component	for
us	and	return	a	component	fixture	that	we	can	perform	testing	operations	on.

quote.spec.ts

import	{	QuoteService	}	from	'./quote.service';

Injecting	Dependencies	and	DOM	Changes

361

import	{	QuoteComponent	}	from	'./quote.component';

import	{	provide,	destroyPlatform	}	from	'@angular/core';

import	{

		async,

		inject,

		TestBed,

}	from	'@angular/core/testing';

import	{

		BrowserDynamicTestingModule,

		platformBrowserDynamicTesting

}	from	'@angular/platform-browser-dynamic/testing';

class	MockQuoteService	{

		public	quote:	string	=	'Test	quote';

		getQuote()	{

				return	Promise.resolve(this.quote);

		}

}

describe('Testing	Quote	Component',	()	=>	{

		let	fixture;

		beforeEach(()	=>	destroyPlatform());

		beforeEach(()	=>	{

				TestBed.initTestEnvironment(

						BrowserDynamicTestingModule,

						platformBrowserDynamicTesting()

);

				TestBed.configureTestingModule({

						declarations:	[

								QuoteComponent

],

						providers:	[

								{	provide:	QuoteService,	useClass:	MockQuoteService	}

]

				});

				fixture	=	TestBed.createComponent(QuoteComponent);

				fixture.detectChanges();

		});

		it('Should	get	quote',	async(inject([],	()	=>	{

				fixture.componentInstance.getQuote();

				fixture.whenStable()

						.then(()	=>	{

								fixture.detectChanges();

								return	fixture.whenStable();

						})

						.then(()	=>	{

								const	compiled	=	fixture.debugElement.nativeElement;

Injecting	Dependencies	and	DOM	Changes

362

								expect(compiled.querySelector('div').innerText).toEqual('Test	quote');

						});

		})));

});

View	Example

Testing	the		QuoteComponent		is	a	fairly	straightforward	process.	We	want	to	create	a
	QuoteComponent	,	feed	it	a	quote	and	see	if	it	appears	in	the	DOM.	This	process	requires	us
to	create	the	component,	pass	in	any	dependencies,	trigger	the	component	to	perform	an
action	and	then	look	at	the	DOM	to	see	if	the	action	is	what	we	expected.

Let's	take	a	look	at	how	this	is	accomplished	with	the	above	unit	test.

We	use		TestBed.initTestingEnvironment		to	create	a	testing	platform	using
	BrowserDynamicTestingModule		and		platformBrowserDynamicTesting		as	arguments,	which	are
also	imported	from	angular	and	allow	the	application	to	be	bootstrapped	for	testing.	This	is
necessary	for	all	unit	tests	that	make	use	of		TestBed	.	Notice	that	this	platform	is	destroyed
and	reset	before	each	test	runs.

We	use		TestBed.configureTestingModule		to	feed	in	any	dependencies	that	our	component
requires.	Here	our	component	depends	on	the		QuoteService		to	get	data.	We	mock	this	data
ourselves	thus	giving	us	control	over	what	value	we	expect	to	show	up.	It	is	good	practice	to
separate	component	testing	from	service	testing	-	this	makes	it	easier	to	test	as	you	are	only
focusing	on	a	single	aspect	of	the	application	at	a	time.	If	your	service	or	component	fails,
how	will	you	know	which	one	was	the	culprit?	We	inject	the		QuoteService		dependency
using	our	mock	class		MockQuoteService	,	where	we	will	provide	mock	data	for	the
component	to	consume.

Next	we	use		TestBed.createComponent(QuoteComponent)		to	create	a	fixture	for	us	to	use	in	our
tests.	This	will	then	create	a	new	instance	of	our	component,	fulfilling	any	Angular-specific
routines	like	dependency	injection.	A	fixture	is	a	powerful	tool	that	allows	us	to	query	the
DOM	rendered	by	a	component,	as	well	as	change	DOM	elements	and	component
properties.	It	is	the	main	access	point	of	testing	components	and	we	use	it	extensively.

In	the		Should	get	quote		test	we	have	gotten	access	to	our	component	through	the
	fixture.componentInstance		property.	We	then	call		getQuote		to	kickstart	our	only	action	in
the		QuoteComponent		component.	We	run	the	test	when	the	fixture	is	stable	by	using	its
	whenStable		method	which	will	ensure	the	promise	inside	the		getQuote()		has	resolved,
giving	the	component	a	chance	to	set	the	quote	value.	We	call		fixture.detectChanges		to
keep	an	eye	out	for	any	changes	taking	place	to	the	DOM,	and	use	the
	fixture.debugElement.nativeElement		property	to	get	access	to	those	underlying	DOM
elements.

Injecting	Dependencies	and	DOM	Changes

363

http://plnkr.co/edit/7KZu1Yg6kBX7rksrpRHV?p=preview

Now	we	can	check	to	see	if	the	DOM	rendered	by	our		QuoteComponent		contains	the	quote
that	we	mocked	in	through	the		QuoteService	.	The	final	line	attempts	to	assert	that	the
DOM's	div	tag	contains	the	mocked	quote	'Test	Quote'	inside.	If	it	does,	then	our	component
passes	the	test	and	works	as	expected;	if	it	doesn't,	that	means	our	component	is	not
outputting	quotes	correctly.

We	wrap		Should	get	quote		test	in		async()	.	This	is	to	allow	our	tests	run	in	an
asynchronous	test	zone.	Using		async		creates	a	test	zone	which	will	ensure	that	all
asynchronous	functions	have	resolved	prior	to	ending	the	test.

Injecting	Dependencies	and	DOM	Changes

364

Overriding	Dependencies	for	Testing
	TestBed		provides	several	functions	to	allow	us	to	override	dependencies	that	are	being
used	in	a	test	module.

	overrideModule	

	overrideComponent	

	overrideDirective	

	overridePipe	

For	example,	you	might	want	to	override	the	template	of	a	component.	This	is	useful	for
testing	a	small	part	of	a	large	component,	as	you	can	ignore	the	output	from	the	rest	of	the
DOM	and	only	focus	on	the	part	you	are	interested	in	testing.

import	{Component}	from	'@angular/core';

@Component({

		selector:	'display-message',

		template:	`

				<div>

						<div>

								<h1>{{message}}</h1>

						<div>

				</div>

		`

})

export	class	MessageComponent	{

		public	message:	string	=	'';

		setMessage(newMessage:	string)	{

						this.message	=	newMessage;

		}

}

Injecting	Dependencies	and	DOM	Changes

365

import	{MessageComponent}	from	'./message.component';

import	{	provide	}	from	'@angular/core';

import	{

		async,

		inject,

		TestBed,

}	from	'@angular/core/testing';

describe('MessageComponent',	()	=>	{

		let	fixture;

		beforeEach(()	=>	{

				TestBed.configureTestingModule({

						declarations:	[MessageComponent],

						providers:	[]

				});

				fixture	=	TestBed.overrideComponent(MessageComponent,	{

						set:	{

								template:	'{{message}}'

						}})

						.createComponent(MessageComponent);

				fixture.detectChanges();

		});

		it('should	set	the	message',	async(inject([],	()	=>	{

				fixture.componentInstance.setMessage('Test	message');

				fixture.detectChanges();

				fixture.whenStable().then(()	=>	{

						const	compiled	=	fixture.debugElement.nativeElement;

						expect(compiled.querySelector('span').innerText).toEqual('Test	message');

				});

		})));

});

View	Example

Injecting	Dependencies	and	DOM	Changes

366

http://plnkr.co/edit/P4tkaUYBFcHGvoTZjKnB?p=preview

Testing	Asynchronous	Actions
Sometimes	we	need	to	test	components	that	rely	on	asynchronous	actions	that	happen	at
specific	times.	Angular	provides	a	function	called		fakeAsync		which	wraps	our	tests	in	a
zone	and	gives	us	access	to	the		tick		function,	which	will	allow	us	to	simulate	the	passage
of	time	precisely.

Let's	go	back	to	the	example	of	the		QuoteComponent		component	and	rewrite	the	unit	test
using		fakeAsync	:

import	{	Component	}	from	'@angular/core';

import	{	QuoteService	}	from	'./quote.service';

@Component({

		selector:	'my-quote',

		template:	'<h3>Random	Quote</h3>	<div>{{quote}}</div>'

})

export	class	QuoteComponent	{

		quote:	string;

		constructor(private	quoteService:	QuoteService){};

		getQuote()	{

				this.quoteService.getQuote().then((quote)	=>	{

						this.quote	=	quote;

				});

		};

}

Testing	Asynchronous	Actions

367

import	{	QuoteService	}	from	'./quote.service';

import	{	QuoteComponent	}	from	'./quote.component';

import	{	provide	}	from	'@angular/core';

import	{

		async,

		TestBed,

		fakeAsync,

		tick,

}	from	'@angular/core/testing';

class	MockQuoteService	{

		public	quote:	string	=	'Test	quote';

		getQuote()	{

				return	Promise.resolve(this.quote);

		}

}

describe('Testing	Quote	Component',	()	=>	{

		let	fixture;

		beforeEach(()	=>	{

				TestBed.configureTestingModule({

						declarations:	[

								QuoteComponent

],

						providers:	[

								{	provide:	QuoteService,	useClass:	MockQuoteService	}

]

				});

				fixture	=	TestBed.createComponent(QuoteComponent);

				fixture.detectChanges();

		});

		it('Should	get	quote',	fakeAsync(()	=>	{

				fixture.componentInstance.getQuote();

				tick();

				fixture.detectChanges();

				const	compiled	=	fixture.debugElement.nativeElement;

				expect(compiled.querySelector('div').innerText).toEqual('Test	quote');

		}));

});

View	Example

Here	we	have	a		QuoteComponent		that	has	a		getQuote		which	triggers	an	asynchronous
update.	We	have	wrapped	our	entire	test	in		fakeAsync		which	will	allow	us	to	test	the
asynchronous	behavior	of	our	component	(getQuote())	using	synchronous	function	calls	by

Testing	Asynchronous	Actions

368

http://plnkr.co/edit/W7zHfjFvEGYW0BBNdQlU?p=preview

calling		tick()	.	We	can	then	run		detectChanges		and	query	the	DOM	for	our	expected
result.

Testing	Asynchronous	Actions

369

Refactoring	Hard-to-Test	Code
As	you	start	writing	unit	tests,	you	may	find	that	a	lot	of	your	code	is	hard	to	test.	The	best
strategy	is	often	to	refactor	your	code	to	make	it	easy	to	test.	For	example,	consider
refactoring	your	component	code	into	services	and	focusing	on	service	tests	or	vice	versa.

Refactoring	Hard-to-Test	Code

370

Testing	Services
When	testing	services	in	Angular	we	employ	many	of	the	same	techniques	and	strategies
used	for	testing	components.	Services,	like	components,	are	classes	with	methods	and
properties	that	we	want	to	verify.	Data	is	the	main	emphasis	in	testing	services	-	are	we
getting,	storing	and	propagating	data	correctly.

Testing	Services

371

Testing	Strategies	for	Services
When	testing	services	that	make	HTTP	calls,	we	don't	want	to	hit	the	server	with	real
requests.	This	is	because	we	want	to	isolate	the	testing	of	our	service	from	any	other	outside
points	of	failure.	Our	service	may	work,	but	if	the	API	server	is	failing	or	giving	values	we
aren't	expecting,	it	may	give	the	impression	that	our	service	is	the	one	failing.	Also,	as	a
project	grows	and	the	number	of	unit	tests	increase,	running	through	a	large	number	of	tests
that	make	HTTP	requests	will	take	a	long	time	and	may	put	strain	on	the	API	server.
Therefore,	when	testing	services	we'll	be	mocking	out	fake	data	with	fake	requests.

Injecting	Dependencies
Like	components,	services	often	require	dependencies	that	Angular	injects	through	the
constructor	of	the	service's	class.	Since	we	are	initializing	these	classes	outside	the
bootstrapping	process	of	Angular,	we	must	explicitly	inject	these	dependencies	ourselves.
This	is	accomplished	by	using	the		TestBed		to	configure	a	testing	module	and	feed	in
required	dependencies	like	the	HTTP	module.

Testing	Strategies	for	Services

372

Testing	HTTP	Requests
Services,	by	their	nature,	perform	asynchronous	tasks.	When	we	make	an	HTTP	request	we
do	so	in	an	asynchronous	manner	so	as	not	to	block	the	rest	of	the	application	from	carrying
out	its	operations.	We	looked	a	bit	at	testing	components	asynchronously	earlier	-	fortunately
a	lot	of	this	knowledge	carries	over	into	testing	services	asynchronously.

The	basic	strategy	for	testing	such	a	service	is	to	verify	the	contents	of	the	request	being
made	(correct	URL)	and	ensure	that	the	data	we	mock	into	the	service	is	returned	correctly
by	the	right	method.

Let's	take	a	look	at	some	code:

wikisearch.ts

import	{Http}	from	'@angular/http';

import	{Injectable}	from	'@angular/core';

import	{Observable}	from	'rxjs';

import	'rxjs/add/operator/map'

@Injectable()

export	class	SearchWiki	{

		constructor	(private	http:	Http)	{}

		search(term:	string):	Observable<any>	{

				return	this.http.get(

						'https://en.wikipedia.org/w/api.php?'	+

						'action=query&list=search&srsearch='	+	term

).map((response)	=>	response.json());

		}

		searchXML(term:	string):	Observable<any>	{

				return	this.http.get(

						'https://en.wikipedia.org/w/api.php?'	+

						'action=query&list=search&format=xmlfm&srsearch='	+	term

);

		}

}

Here	is	a	basic	service.	It	will	query	Wikipedia	with	a	search	term	and	return	an		Observable	
with	the	results	of	the	query.	The	search	function	will	make	a	GET	request	with	the	supplied
term,	and	the	searchXML	method	will	do	the	same	thing,	except	request	the	response	to	be
in	XML	instead	of	JSON.	As	you	can	see,	it	depends	on	the	HTTP	module	to	make	a	request
to	wikipedia.org.

Testing	HTTP	Requests

373

Our	testing	strategy	will	be	to	check	to	see	that	the	service	has	requested	the	right	URL,	and
once	we've	responded	with	mock	data	we	want	to	verify	that	it	returns	that	same	data.

Testing	HTTP	Requests

374

Testing	HTTP	Requests	Using
MockBackend
To	unit	test	our	services,	we	don't	want	to	make	actual	HTTP	requests.	To	accomplish	this,
we	need	to	mock	out	our	HTTP	services.	Angular	provides	us	with	a		MockBackend		class	that
can	be	configured	to	provide	mock	responses	to	our	requests,	without	actually	making	a
network	request.

The	configured		MockBackend		can	then	be	injected	into	HTTP,	so	any	calls	to	the	service,
such	as		http.get		will	return	our	expected	data,	allowing	us	to	test	our	service	in	isolation
from	real	network	traffic.

wikisearch.spec.ts

import	{

		fakeAsync,

		inject,

		TestBed

}	from	'@angular/core/testing';

import	{

		HttpModule,

		XHRBackend,

		ResponseOptions,

		Response,

		RequestMethod

}	from	'@angular/http';

import	{

		MockBackend,

		MockConnection

}	from	'@angular/http/testing/mock_backend';

import	{SearchWiki}	from	'./wikisearch.service';

const	mockResponse	=	{

		"batchcomplete":	"",

		"continue":	{

				"sroffset":	10,

				"continue":	"-||"

		},

		"query":	{

				"searchinfo":	{

						"totalhits":	36853

				},

				"search":	[{

						"ns":	0,

						"title":	"Stuff",

Testing	HTTP	Requests

375

						"snippet":	"",

						"size":	1906,

						"wordcount":	204,

						"timestamp":	"2016-06-10T17:25:36Z"

				}]

		}

};

describe('Wikipedia	search	service',	()	=>	{

		beforeEach(()	=>	{

				TestBed.configureTestingModule({

						imports:	[HttpModule],

						providers:	[

								{

										provide:	XHRBackend,

										useClass:	MockBackend

								},

								SearchWiki

]

				});

		});

		it('should	get	search	results',	fakeAsync(

				inject([

						XHRBackend,

						SearchWiki

],	(mockBackend:	XHRBackend,	searchWiki:	SearchWiki)	=>	{

						const	expectedUrl	=	'https://en.wikipedia.org/w/api.php?'	+

								'action=query&list=search&srsearch=Angular';

						mockBackend.connections.subscribe(

								(connection:	MockConnection)	=>	{

										expect(connection.request.method).toBe(RequestMethod.Get);

										expect(connection.request.url).toBe(expectedUrl);

										connection.mockRespond(new	Response(

												new	ResponseOptions({	body:	mockResponse	})

));

								});

						searchWiki.search('Angular')

								.subscribe(res	=>	{

										expect(res).toEqual(mockResponse);

								});

				})

));

		it('should	set	foo	with	a	1s	delay',	fakeAsync(

				inject([SearchWiki],	(searchWiki:	SearchWiki)	=>	{

						searchWiki.setFoo('food');

						tick(1000);

Testing	HTTP	Requests

376

						expect(searchWiki.foo).toEqual('food');

				})

));

});

View	Example

We	use		inject		to	inject	the		SearchWiki		service	and	the		MockBackend		into	our	test.	We
then	wrap	our	entire	test	with	a	call	to		fakeAsync	,	which	will	be	used	to	control	the
asynchronous	behavior	of	the		SearchWiki		service	for	testing.

Next,	we		subscribe		to	any	incoming	connections	from	our	back-end.	This	gives	us	access
to	an	object		MockConnection	,	which	allows	us	to	configure	the	response	we	want	to	send	out
from	our	back-end,	as	well	as	test	any	incoming	requests	from	the	service	we're	testing.

In	our	example,	we	want	to	verify	that	the		SearchWiki	's	search	method	makes	a	GET
request	to	the	correct	URL.	This	is	accomplished	by	looking	at	the	request	object	we	get
when	our		SearchWiki		service	makes	a	connection	to	our	mock	back-end.	Analyzing	the
	request.url		property	we	can	see	if	its	value	is	what	we	expect	it	to	be.	Here	we	are	only
checking	the	URL,	but	in	other	scenarios	we	can	see	if	certain	headers	have	been	set,	or	if
certain	POST	data	has	been	sent.

Now,	using	the		MockConnection		object	we	mock	in	some	arbitrary	data.	We	create	a	new
	ResponseOptions		object	where	we	can	configure	the	properties	of	our	response.	This	follows
the	format	of	a	regular	Angular	Response	class.	Here	we	have	simply	set	the		body		property
to	that	of	a	basic	search	result	set	you	might	see	from	Wikipedia.	We	could	have	also	set
things	like	cookies,	HTTP	headers,	etc.,	or	set	the		status		value	to	a	non-200	state	to	test
how	our	service	responds	to	errors.	Once	we	have	our		ResponseOptions		configured	we
create	a	new	instance	of	a		Respond		object	and	tell	our	back-end	to	start	using	this	as	a
response	by	calling		.mockRespond	.

It	is	possible	to	use	multiple	responses.	Say	your	service	had	two	possible	GET	requests	-
one	for		/api/users	,	and	another		/api/users/1	.	Each	of	these	requests	has	a	different
corresponding	set	of	mock	data.	When	receiving	a	new	connection	through	the		MockBackend	
subscription,	you	can	check	to	see	what	type	of	URL	is	being	requested	and	respond	with
whatever	set	of	mock	data	makes	sense.

Finally,	we	can	test	the		search		method	of	the		SearchWiki		service	by	calling	it	and
subscribing	to	the	result.	Once	our	search	process	has	finished,	we	check	the	result	object
to	see	if	it	contains	the	same	data	that	we	mocked	into	our	back-end.	If	it	is,	then
congratulations,	your	test	has	passed.

Testing	HTTP	Requests

377

http://plnkr.co/edit/K9gzDOcEOcmfFaOacdKZ?p=preview
https://angular.io/docs/js/latest/api/http/Response-class.html

In	the		should	set	foo	with	a	1s	delay		test,	you	will	notice	that	we	call		tick(1000)		which
simulates	a	1	second	delay.

Testing	HTTP	Requests

378

Alternative	HTTP	Mocking	Strategy
An	alternative	to	using		MockBackend		is	to	create	our	own	light	mocks.	Here	we	create	an
object	and	then	tell	TypeScript	to	treat	it	as		Http		using	type	assertion.	We	then	create	a
spy	for	its		get		method	and	return	an	observable	similar	to	what	the	real		Http		service
would	do.

This	method	still	allows	us	to	check	to	see	that	the	service	has	requested	the	right	URL,	and
that	it	returns	that	expected	data.

wikisearch.spec.ts

import	{

		fakeAsync,

		inject,

		TestBed

}	from	'@angular/core/testing';

import	{

		HttpModule,

		Http,

		ResponseOptions,

		Response

}	from	'@angular/http';

import	{	Observable	}	from	'rxjs/Observable';

import	'rxjs/add/observable/of';

import	{SearchWiki}	from	'./wikisearch.service';

const	mockResponse	=	{

		"batchcomplete":	"",

		"continue":	{

				"sroffset":	10,

				"continue":	"-||"

		},

		"query":	{

				"searchinfo":	{

						"totalhits":	36853

				},

				"search":	[{

						"ns":	0,

						"title":	"Stuff",

						"snippet":	"",

						"size":	1906,

						"wordcount":	204,

						"timestamp":	"2016-06-10T17:25:36Z"

				}]

		}

};

Testing	HTTP	Requests

379

describe('Wikipedia	search	service',	()	=>	{

		let	mockHttp:	Http;

		beforeEach(()	=>	{

				mockHttp	=	{	get:	null	}	as	Http;

				spyOn(mockHttp,	'get').and.returnValue(Observable.of({

						json:	()	=>	mockResponse

				}));

				TestBed.configureTestingModule({

						imports:	[HttpModule],

						providers:	[

								{

										provide:	Http,

										useValue:	mockHttp

								},

								SearchWiki

]

				});

		});

		it('should	get	search	results',	fakeAsync(

				inject([SearchWiki],	searchWiki	=>	{

						const	expectedUrl	=	'https://en.wikipedia.org/w/api.php?'	+

								'action=query&list=search&srsearch=Angular';

						searchWiki.search('Angular')

								.subscribe(res	=>	{

										expect(mockHttp.get).toHaveBeenCalledWith(expectedUrl);

										expect(res).toEqual(mockResponse);

								});

				})

));

});

View	Example

Testing	HTTP	Requests

380

http://plnkr.co/edit/eplM1SETfR51USVZLUlU?p=preview

Testing	JSONP	and	XHR	Back-Ends
Some	services	take	advantage	of	the	JSONP	or	XHR	module	to	fetch	data	instead	of	the
traditional	HTTP	module.	We	use	the	same	strategies	for	testing	these	services	-	create	a
mock	back-end,	initialize	the	service	and	test	to	see	if	the	request	our	service	made	is
correct	and	if	the	data	mocked	through	the	back-end	makes	its	way	successfully	to	the
service.	Fortunately	services	that	rely	on	the	XHR	module	are	tested	exactly	the	same	way
as	services	that	use	the	HTTP	module.	The	only	difference	is	in	which	class	is	used	to	mock
the	back-end.	In	services	that	use	the	HTTP	module,	the		MockBackend		class	is	used;	in
those	that	use	XHR,	the		XHRBackend		is	used	instead.	Everything	else	remains	the	same.

Unfortunately	services	that	use	the	JSONP	module	use	a	significantly	different	class	for
mocking	the	back-end.	The	class		MockBrowserJsonp		is	used	for	this	scenario.

Testing	HTTP	Requests

381

Executing	Tests	Asynchronously
Since	services	operate	in	an	asynchronous	manner	it	may	be	useful	to	execute	a	service's
entire	unit	test	asynchronously.	This	can	speed	up	the	overall	time	it	takes	to	complete	a	full
testing	cycle	since	a	particular	long	unit	test	will	not	block	other	unit	tests	from	executing.	We
can	set	up	our	unit	test	to	return	a	promise,	which	will	resolve	as	either	a	success	or	failure
depending	on	the	activity	of	the	test.

describe('verify	search',	()	=>	{

		it('searches	for	the	correct	term',

				fakeAsync(inject([SearchWiki,	MockBackend],	(searchWiki,	mockBackend)	=>	{

								return	new	Promise((pass,	fail)	=>	{

										...

								});

				})));

});

Instead	of	only	using		inject	,	we	use		fakeAsync		to	wrap	it	and	fulfill	dependencies	and
execute	the	test	in	an	asynchronous	process.	Using		fakeAsync		requires	us	to	return	a
Promise,	which	we	use	to	resolve	the	competition	of	our	test	by	calling		pass	,	or		fail	,
depending	on	the	results	of	our	test.

Executing	Tests	Asynchronously

382

Testing	Redux
Unit	testing	Redux	is	a	very	straightforward	process.	There	are	two	primary	units:

Reducers	are	pure	functions	that	lend	themselves	well	to	testing.

Actions	trigger	changes	in	a	Redux	system.	There	are	two	broad	categories	of	actions:
synchronous	(which	are	quite	simple	to	test)	and	asynchronous	(which	are	slightly	more
involved).

The	examples	below	should	provide	you	with	a	strong	foundation	for	testing	Redux
applications.

Testing	Redux

383

Testing	Simple	Actions
Consider	the	following	simple	actions,	from	the	Redux	chapter	of	this	book:

import	{	Injectable	}	from	'@angular/core';

import	{	NgRedux	}	from	'ng2-redux';

export	const	INCREMENT_COUNTER	=	'INCREMENT_COUNTER';

export	const	DECREMENT_COUNTER	=	'DECREMENT_COUNTER';

@Injectable

export	class	CounterActions	{

		constructor(private	redux:	NgRedux<any>)	{}

		increment()	{

				this.redux.dispatch({	type:	INCREMENT_COUNTER	});

		}

		decrement()	{

				this.redux.dispatch({	type:	DECREMENT_COUNTER	});

		}

}

These	are	pretty	straightforward	to	test:

Testing	Simple	Actions

384

import	{	NgRedux	}	from	'ng2-redux';

import	{

		CounterActions,

		INCREMENT_COUNTER,

		DECREMENT_COUNTER,

}	from	'./counter';

//	Mock	out	the	NgRedux	class	with	just	enough	to	test	what	we	want.

class	MockRedux	extends	NgRedux<any>	{

		constructor()	{

				super(null);

		}

		dispatch	=	()	=>	undefined;

}

describe('counter	action	creators',	()	=>	{

		let	actions:	CounterActions;

		let	mockRedux:	NgRedux<any>;

		beforeEach(()	=>	{

				//	Initialize	mock	NgRedux	and	create	a	new	instance	of	the

				//	ActionCreatorService	to	be	tested.

				mockRedux	=	new	MockRedux();

				actions	=	new	CounterActions(mockRedux);

		});

		it('increment	should	dispatch	INCREMENT_COUNTER	action',	()	=>	{

				const	expectedAction	=	{

						type:	INCREMENT_COUNTER

				};

				spyOn(mockRedux,	'dispatch');

				actions.increment();

				expect(mockRedux.dispatch).toHaveBeenCalled();

				expect(mockRedux.dispatch).toHaveBeenCalledWith(expectedAction);

		});

		it('decrement	should	dispatch	DECREMENT_COUNTER	action',	()	=>	{

				const	expectedAction	=	{

						type:	DECREMENT_COUNTER

				};

				spyOn(mockRedux,	'dispatch');

				actions.decrement();

				expect(mockRedux.dispatch).toHaveBeenCalled();

				expect(mockRedux.dispatch).toHaveBeenCalledWith(expectedAction);

		});

});

Testing	Simple	Actions

385

We	just	make	sure	that	our	action	creators	do	indeed	dispatch	the	correct	actions.

Testing	Simple	Actions

386

Testing	Complex	Actions
Things	get	a	little	trickier	when	we	want	to	test	asynchronous	or	conditional	action	creators.
Our	goal	is	still	the	same:	make	sure	that	our	operations	are	dispatching	the	actions	we're
expecting.

A	Conditional	Action
Consider	the	following	conditional	action	(i.e.,	one	that	is	fired	depending	on	current	state):

import	{	Injectable	}	from	'@angular/core';

import	{	NgRedux	}	from	'ng2-redux';

export	const	INCREMENT_COUNTER	=	'INCREMENT_COUNTER';

@Injectable()

export	class	MyActionService	{

		constructor(private	redux:	NgRedux)	{};

		//	A	conditional	action

		incrementIfOdd()	{

				const	{	counter	}	=	this.redux.getState();

				if	(counter	%	2	===	0)	return;

				this.redux.dispatch({	type:	INCREMENT_COUNTER	});

		}

}

Unit	testing	is	similar	to	before,	but	we	need	to	mock	our	state	as	well	as	dispatch:

Testing	Complex	Actions

387

import	{	NgRedux	}	from	'ng2-redux';

import	{	CounterActions	}	from	'./counter';

class	MockRedux	extends	NgRedux<any>	{

		constructor(private	state:	any)	{

				super(null);

		}

		dispatch	=	()	=>	undefined;

		getState	=	()	=>	this.state;

}

describe('counter	action	creators',	()	=>	{

		let	actions:	CounterActions;

		let	mockRedux:	NgRedux<any>;

		let	mockState:	any	=	{};

		beforeEach(()	=>	{

				//	Our	mock	NgRedux	can	now	accept	mock	state	as	a	constructor	param.

				mockRedux	=	new	MockRedux(mockState);

				actions	=	new	CounterActions(mockRedux);

		});

		it('incrementIfOdd	should	dispatch	INCREMENT_COUNTER	action	if	count	is	odd',

				()	=>	{

						//	Our	tests	can	bake	in	the	initial	state	they	need.

						const	expectedAction	=	{

								type:	CounterActions.INCREMENT_COUNTER

						};

						mockState.counter	=	3;

						spyOn(mockRedux,	'dispatch');

						actions.incrementIfOdd();

						expect(mockRedux.dispatch).toHaveBeenCalled();

						expect(mockRedux.dispatch).toHaveBeenCalledWith(expectedAction);

				});

		it('incrementIfOdd	should	not	dispatch	INCREMENT_COUNTER	action	if	count	is	even',

				()	=>	{

						mockState.counter	=	2;

						spyOn(mockRedux,	'dispatch');

						actions.incrementIfOdd();

						expect(mockRedux.dispatch).not.toHaveBeenCalled();

				});

});

An	Async	Action

Testing	Complex	Actions

388

What	about	async	actions	like	the	following?

import	{	Injectable	}	from	'@angular/core';

import	{	NgRedux	}	from	'ng2-redux';

export	const	INCREMENT_COUNTER	=	'INCREMENT_COUNTER';

export	const	DECREMENT_COUNTER	=	'DECREMENT_COUNTER';

@Injectable()

export	class	CounterActions	{

		constructor(private	redux:	NgRedux<any>)	{}

		//	...

		incrementAsync(timeInMs	=	1000)	{

				this.delay(timeInMs).then(()	=>	this.redux.dispatch({	type:	INCREMENT_COUNTER	}));

		}

		private	delay(timeInMs)	{

				return	new	Promise((resolve,reject)	=>	{

						setTimeout(()	=>	resolve()	,	timeInMs);

				});

		}

}

We	can	test	this	using	the	normal	techniques	for	async	service	functions:

If	we	can	make		incrementAsync		return	a	promise,	we	can	just	return	a	promise	from	the
test	and		jasmine		will	wait	until	it	settles.
Alternately,	we	can	use	the		fakeAsync		technique	discussed	in	the	section	on	testing
components.

The	thing	to	remember	is	that	if	we	follow	the	ActionCreatorService	pattern,	our	actions	are
just	functions	on	an	Angular	service.	So	we	can	mock	out	NgRedux	(and	any	other
dependencies)	and	just	test	it	as	we	would	any	other	Angular	service.

Testing	Complex	Actions

389

Testing	Reducers
Luckily,	testing	reducers	is	a	lot	like	testing	our	synchronous	action	creators,	since	all
reducer	operations	are	synchronous.	This	plays	a	big	role	in	making	our	global	state	easy	to
keep	track	of,	which	is	why	we're	big	fans	of	Redux.

We'll	test	the	counter	reducer	in	angular2-redux-starter,	as	follows:

export	default	function	counter(state	=	0,	action)

		switch	(action.type)	{

				case	INCREMENT_COUNTER:

						return	state	+	1;

				case	DECREMENT_COUNTER:

						return	state	-	1;

				default:

						return	state;

		}

}

As	you	can	see,	there	are	three	cases	to	test:	the	default	case,	the	increment	and	the
decrement.	We	want	to	test	that	our	actions	trigger	the	state	changes	we	expect	from	the
reducer.

Testing	Reducers

390

https://github.com/rangle/angular2-redux-starter

import	{	INCREMENT_COUNTER,	DECREMENT_COUNTER	}	from	'../actions/counter';

import	counter	from	'./counter';																																									

describe('counter	reducers',	()	=>	{																																					

		it('should	handle	initial	state',	()	=>	{																														

				expect(

						counter(undefined,	{})																																													

)																																																																				

				.toEqual(0)																																																									

		});																																																																				

		it('should	handle	INCREMENT_COUNTER',	()	=>	{																										

				expect(

						counter(0,	{																																																							

								type:	INCREMENT_COUNTER																																										

						})																																																																	

)																																																																				

				.toEqual(1)																																																									

		});																																																																				

		it('should	handle	DECREMENT_COUNTER',	()	=>	{																										

				expect(

						counter(1,	{																																																							

								type:	DECREMENT_COUNTER																																										

						})																																																																	

)																																																																				

				.toEqual(0)																																																									

		});																																																																				

});

Note	that	we're	only	testing	the	section	of	Redux	state	that	the		counter		reducer	is
responsible	for,	and	not	the	whole.	We	can	see	from	these	tests	that	Redux	is	largely	built
on	pure	functions.

Testing	Reducers

391

Afterthoughts
The	examples	outlined	above	are	just	one	approach	to	unit	testing	in	Redux.	During	actual
development	it	might	prove	to	be	too	costly	to	maintain	tests	for	every	action	and	reducer,
and	in	some	cases	even	trivial	(i.e.	should	I	be	paranoid	about	this	JSON	object	with	one
property	being	returned?).

Another	approach	we've	tried	is	to	treat	the	overall	state	change	in	the	store	triggered	by	an
action	(or	by	a	series	of	actions)	as	a	single	unit	-	in	the	Redux	world	reducers	don't	function
without	actions	and	vice	versa,	so	why	separate	them?	This	leaves	more	flexibility	when
making	changes	to	actions	and	reducers	without	losing	scope	of	what	Redux	is	doing	for	our
app.

Afterthoughts

392

Migrating	Angular	1.x	Projects	to	Angular
2

Figure:	Great	Migration	by	gekkodigitalmedia	licensed	under	Public	Domain
(https://pixabay.com/en/great-migration-africa-animal-1021460/)

Migrating	Angular	1.x	Projects	to	Angular	2

393

Migration	Prep
Before	most	Angular	1.x	applications	can	be	upgraded	to	Angular	2	there	is	preparatory
work	to	do.	This	is	especially	true	for	Angular	applications	using	style	that	predates	Angular
1.3.

Migration	Prep

394

Upgrading	to	Angular	1.3+	Style
The	first	step	of	any	migration	is	to	upgrade	the	codebases	style	to	conform	to	Angular	1.3+
style,	ideally	an	Angular	1.5+	style.	This	means:

All	controllers	should	be	in		controllerAs		form,	and	ideally	should	only	exist	on
directives
Use	directives,	specifically	"component	directives",	that	use	the	following	properties:

	restrict:	'E'	

	scope:	{}	

	bindToController:	{}	

	controllerAs	

	template		or		templateUrl	
	transclude		(optional)
	require		(optional)

Component	directives	should	not	use	the	following	attributes:

	compile	

	replace:	true	

	priority	/	terminal	
Ideally	have	one	component,	or	one	thing	per	file
Ideally	have	folders	organized	by	feature

Upgrading	To	Angular	1.3+	Style

395

Using	Webpack
Using	a	module	loader	like	webpack	is	essential	for	migrating	to	Angular,	and	should	already
be	part	of	every	modern	programmer's	tool	set.	Webpack	will	make	it	easy	to	manage	all	the
different	files	that	a	modern,	modular	Angular	1.3+	project	prescribes.	This	includes	bundling
the	application	for	distribution	or	deployment.

Using	webpack	will	also	simplify	a	programmer's	Angular	workflow,	since	the	easiest	way	to
work	with	Angular	is	with	TypeScript,	or	ES6,	neither	of	which	works	natively	in
contemporary	browsers.

Using	Webpack

396

Migrating	to	TypeScript
TypeScript	is	a	superset	of	ES6	and,	as	its	name	suggests,	uses	a	type	system.	This	can
have	an	enormous	impact	on	developer	tools,	providing	richer	auto-complete	and	static
analysis.

Angular	was	built	using	TypeScript,	and	supports	decorators	which	provide	meta	information
to	Angular.	While	it	is	possible	to	use	Angular	without	these	features,	the	syntax	feels	more
"natural"	with	TypeScript's	decorators.

Migrating	To	TypeScript

397

Choosing	an	Upgrade	Path
There	are	three	ways	to	upgrade	from	Angular	1	to	2:

Total	conversion
ng-upgrade
ng-metadata

Choosing	an	Upgrade	Path

398

Total	Conversion
Completely	converting	an	application	from	Angular	1	to	Angular	2	is	technically	possible,	but
really	only	suitable	for	the	smallest	applications.	Even	small	applications	can	be	tricky	to
totally	convert	if	they're	not	well	structured.

Avoiding	Total	Conversion

399

Using	ng-metadata	(Angular	1.x	Using	>=	2
Style)
The	ng-metadata	approach	is	done	with	Angular	1.x	dependencies	and	a	few	small	helper
libraries.	ng-metadata	allows	developers	to	use	Angular	2	style	TypeScript
(annotations/decorators)	without	Angular	2.	Unfortunately	templates	are	still	mostly	in
Angular	1.x	style.

Once	an	application	is	converted	to	ng-metadata	style	it	is	very	close	to	Angular	2,	but	still
requires	refactoring.	In	most	cases,	ng-metadata	is	not	as	efficient	as	ng-upgrade	with
respect	to	refactoring	time.	The	payload	of	an	ng-metadata	application	is	smaller,	and
porting	to	ng-metadata	can	be	done	in	an	even	more	ad-hoc	fashion	than	with	ng-upgrade.

The	general	flow	of	using	ng-metadata	with	an	application	is:

Install	ng-metadata	dependencies
Bootstrap	root	component
Upgrade	components	strategically
Refactor	the	codebase	to	Angular	2

ng-metadata	is	favored	over	the	deprecated	ng-forward.

Using	ng-metadata	(Angular	1.x	Using	2	Style)

400

Bootstrapping	ng-metadata
ng-metadata	provides		@NgModule		from	Angular	2	to	Angular	1.	To	use		@NgModule	,	update
your	application	bootstrap	from		angular.bootstrap		to	the	example	below.

Bootstrap	(bootstrap.ts)

import	{	platformBrowserDynamic	}	from	'ng-metadata/platform-browser-dynamic';

import	{	AppModule	}	from	'./app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

App	Module	(app.module.ts)

import	{	NgModule	}	from	'ng-metadata/core';

import	{	AppComponent	}	from	'./app.component';

import	{	HeroComponent	}	from	'./hero.component';

import	{	HeroService	}	from	'./hero.service';

@NgModule({

		declarations:	[AppComponent,	HeroComponent],

		providers:	[HeroService]

})

export	class	AppModule	{}

Bootstrapping	ng-metadata

401

https://angular.io/docs/ts/latest/api/core/index/NgModule-interface.html

Components	and	Services
ng-metadata	lets	us	write	code	in	an	Angular	style.	Components	written	in	this	style	are
prime	candidates	for	an	eventual	upgrade	using	ng-upgrade.

Components
Components	use		@Component		from	ng-metadata.	Lifecycle	hooks	similar	to	those	in	Angular
should	work	with	ng-metadata.

import	{	Component,	Inject,	Input,	Output,	EventEmitter,	OnInit	}	from	'ng-metadata/co

re';

import	{	HeroService	}	from	'./hero.service';

@Component({

		selector:	'hero',

		templateUrl:	'./hero.component.html'

})

export	class	HeroComponent	implements	OnInit	{

		@Input()	name:	string;

		@Output()	call	=	new	EventEmitter<void>();

		//	Services	can	be	included	using	`@Inject`	or	by	their	class	literal

		constructor(

				@Inject('$log')	private	$log:	ng.ILogService,

				private	heroSvc:	HeroService

){

		}

		ngOnInit()	{

				console.log('Component	initialized');

		}

}

Services
Services	use		@Injectable		from	ng-metadata.	This	decorator	is	written	preceding	a
TypeScript	class.	Angular	1	services	can	be	added	by	using	the		@Inject		decorator	in	the
service	constructor.

Components	and	Services

402

import	{	Injectable,	Inject	}	from	'ng-metadata/core';

@Injectable()

export	class	HeroService	{

		constructor(@Inject('$http')	private	$http:	ng.IHttpService){

		}

		fetchAll(){

				return	this.$http.get('/api/heroes');

		}

}

Components	and	Services

403

Using	ng-upgrade	(Angular	1.x	Co-Existing
With	Angular	2)
The	ng-upgrade	is	done	by	running	Angular	2	and	Angular	1	together	in	the	same
application.	In	this	scenario	Angular	1.x	controls	the	page,	and	Angular	2	controls	the
change	detection	mechanisms.	Once	the	two	Angulars	co-exist,	upgrading	can	be	done	in
strategic	pieces.

Using	ng-upgrade	(Angular	1.x	Coexisting	With	Angular	2)

404

Order	of	Operations
Migrating	a	large	Angular	1	application	to	Angular	2	can	be	a	big	undertaking.	We
recommend	the	following	order	of	operations	during	conversion.

Webpack
TypeScript
Move	as	much	code	as	possible	into	pure	TypeScript	modules

Write	framework-agnostic	unit	tests	for	that	code
Good	candidates	for	this	are	stateless	services

Enable	ngUpgrade
If	used,	replace	the		ng-app		directive	with		angular.bootstrap	.
Create		UpgradeAdapter		singleton	and	replace	"bootstrap".

Identify	components	(directives)	of	the	app	most	likely	to	benefit	from	Angular	2
These	could	be	parts	of	the	app	where	performance	is	a	problem,	parts	where
there	will	be	more	active	development	or	parts	that	could	really	benefit	from
Angular	2	libraries	or	components.

Convert	all	service	dependencies	from	Angular	1	to	Angular	2
Move	existing		.factory		Angular	services	to		.service	
Leverage	TypeScript	classes
Use		upgradeAdapter.downgradeNg2Provider(ServiceName)		to	expose	Angular	2
service	to	Angular	1

Repeat	this	process	until	all	components	have	been	converted	to	Angular	2

Order	of	Operations

405

Replacing	Services	with	TypeScript
Classes
Early	Angular	1	applications	predate	the	widespread	use	of	module	loaders.	The	strategy	of
this	era	was	to	concatenate	source	files	and	rely	on	Angular	1's	dependency	injection	as	a
poor-man's	module	loader.	Often	services	were	used	to	house	libraries	instead	of	stateful
services.

During	conversion,	we	will	introduce	Webpack	as	a	module	loader.	For	services	that	lack
state	and	don't	heavily	rely	on	other	dependency	injected	services,	we	recommend	rewriting
them	using	TypeScript	modules.	The	advantages	of	writing	code	this	way	are:

It	becomes	framework	agnostic	(doesn't	rely	on	Angular	1	explicitly)
It	is	easier	to	test
It	instantly	works	with	both	Angular	1	and	Angular	2

Even	services	that	depend	on	a	limited	set	of	Angular	1	services	(e.g.		$http)	can	be
rewritten	by	depending	on	other	libraries	(e.g.		window.fetch).

How	do	we	get	there?
Convert	services	using		.factory		to		.service	

Angular	2's		@Injectable		expects	an	object	it	can	use		new		with,	similar	to	how
	.service		works	(e.g.		new	CalculatorService())

Replace	constructor	functions	with	TypeScript		class	
Use	the	class	directly	by		export	ing	it.

Example

	.factory		original

Replacing	Services	with	TypeScript	Classes

406

angular.module('calcapp',	[])

		.factory('CalculatorService',	function	()	{

				return	{

						square:	function	(a)	{

								return	a*a;

						},

						cube:	function	(a)	{

								return	a*a*a;

						}

				};

		});

Conversion	to		.service	

angular.module('calcapp',	[])

		.service('CalculatorService',	function	()	{

				this.square	=	function	(a)	{

						return	a*a;

				};

				this.cube	=	function	(a)	{

						return	a*a*a;

				}

		});

Conversion	to	TypeScript	class

class	CalculatorService	{

		square	(a)	{

				return	a*a;

		}

		cube	(a)	{

				return	a*a*a;

		}

}

angular.module('calcapp',	[])

		.service('CalculatorService',	CalculatorService);

Skip	the	middleman

Replacing	Services	with	TypeScript	Classes

407

export	class	CalculatorService	{	...	}

//	elsewhere

import	{CalculatorService}	from	'./calculator.service';

Replacing	Services	with	TypeScript	Classes

408

Bootstrapping	ng-upgrade
Use	manual	Angular	1.x	bootstrapping,	and	remove		ng-app	/	ng-strict-di		references
if	they	exist
Add	Angular	2	dependencies
Add	the	upgrade	adapter		import	{UpgradeAdapter}	from	'@angular/upgrade'	
Call	the	upgrade	adapter's	bootstrap

Once	this	is	working	the	foundation	is	set	for	transitioning	from	Angular	1.x	to	Angular	2.	It	is
important	to	note	that	the	upgrade	adapter's	bootstrap	mechanism	is	asynchronous.
Additionally	it's	important	to	treat	the	upgrade	adapter	as	a	singleton.

The	following	file	creates	an	instance	of		UpgradeAdapter		and	exports	it.

//	Angular	2	Vendor	Import

import	{UpgradeAdapter}	from	'@angular/upgrade';

import	{NgModule,	forwardRef}	from	'@angular/core';

import	{BrowserModule}	from	'@angular/platform-browser';

//	Instantiate	an	adapter	with	the	AppModule

//	Use	forwardRef	to	pass	AppModule	reference	at	runtime

export	const	upgradeAdapter	=	new	UpgradeAdapter(forwardRef(()	=>	AppModule));

@NgModule({

		declarations:	[],

		providers:	[],

		imports:	[BrowserModule]

})

export	class	AppModule	{

}

The	following	file	bootstraps	an	Angular	1/2	hybrid	application:

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Name	the	application

const	APPNAME	=	'angular-upgrade-example';

//	Register	classic	Angular	1	modules

angular.module(APPNAME,	[]);

//	Bootstrap	Angular	2	-	*note*	this	is	asynchronous

upgradeAdapter.bootstrap(document.body,	[APPNAME],	{strictDi:	true});

Bootstrapping	ng-upgrade

409

The	above	example	does	not	actually	do	anything	other	than	bootstrap	an	empty	application.

Upgrading/Downgrading	Components
Once	bootstrapping	is	complete,	Angular	1.x	components	can	be	upgraded	to	work	with
Angular	2.	Conversely,	Angular	2	components	can	be	downgraded	to	work	with	Angular	1.x.

Bootstrapping	ng-upgrade

410

Downgrading	Components
Upgrading	components	sounds	like	it	should	happen	before	downgrading,	but	the	point	of
upgrading	is	to	make	an	Angular	1.x	component	work	with	Angular	2.	For	an	Angular	2
component	to	use	an	Angular	1.x	component	in	an	ng-upgrade	application	there	must	first
be	a	downgraded	Angular	2	component.	Consequently	it's	important	to	first	learn	how	to
downgrade	Angular	2	components	to	work	with	Angular	1.x

All	downgraded	components	operate	like	Angular	1.x		'E'		element	directives.

Here	is	an	example	of	a	very	simple	Angular	2	component:

import	{Component}	from	'@angular/core';

@Component({

		selector:	'a2-downgrade',

		template:	'<p>{{	message	}}</p>'

})

export	class	A2DowngradeComponent	{

		message	=	`What	you're	seeing	here	is	an	Angular2	component	`	+

				`running	in	an	Angular1	app!`;

}

Registering	the	downgraded	component	with	Angular	1.x:

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Angular	2	component	from	above

import	{A2DowngradeComponent}	from	'./components/a2-downgrade';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.directive('a2Downgrade',

				upgradeAdapter.downgradeNg2Component(A2DowngradeComponent));

Downgrading	Components

411

Upgrading	Components
The	only	Angular	1.x	components	that	can	be	upgraded	and	used	in	Angular	2	code	are
those	that	strictly	follow	the	component	pattern	outlined	at	the	top	of	this	document.
Wherever	possible	use	Angular	1.5+'s		.component	.

Here	is	an	Angular	1.x	directive	that	conforms	to	ng-upgrade's	"component	directive"
specification:

angular.module('app').directive('a1Upgradable',	function	a1UpgradableDirective()	{

		return	{

				restrict:	'E',

				scope:	{},

				bindToController:	{},

				controller:	Upgradable,

				controllerAs:	'a1Upgradable',

				template:	`{{	a1Upgradable.message	}}`

		};

});

class	Upgradable	{

		message	=	'I	am	an	Angular	1	Directive';

}

Equivalently	this	can	be	written	using		.component		in	Angular	1.5+:

angular.module('app').component('a1Upgradable',	{

		controller:	Upgradable,

		template:	`{{	a1Upgradable.message	}}`

});

class	Upgradable	{

		message	=	'I	am	an	Angular	1	Directive';

}

Below	is	an	Angular	2	component	that	will	use	the	upgraded	Angular	1.x	directive:

Upgrading	Components

412

import	{upgradeAdapter}	from	'../upgrade-adapter';

import	{A2UsingA1Component}	from	'./a2-using-a1.component';

@NgModule({

		declarations:	[upgradeAdapter.upgradeNg1Component('a1Upgradable'),	A2UsingA1Componen

t],

		providers:	[],

		imports:	[BrowserModule]

})

export	class	AppModule	{

}

import	{Component}	from	'@angular/core';

@Component({

		selector:	'a2-using-a1',

		template:	`<p>{{	message	}}<a1-upgradable></a1-upgradable></p>`

})

export	class	A2UsingA1Component	{

		message	=	'Angular	2	Using	Angular	1:	';

}

Finally,	let	Angular	1.x	know	about	the	directive:

import	{a1UpgradableDirective}	from	'./components/a1-upgradable';

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.directive('a1Upgradable',	a1UpgradableDirective)

Upgrading	Components

413

Projecting	Angular	1	Content	into	Angular
2	Components
In	Angular	2	the	concept	of	"transclusion"	has	been	replaced	by	the	concept	of	projection.
ng-upgrade	provides	mechanisms	for	projecting/transcluding	Angular	1.x	content	into
Angular	2	components:

This	is	what	a	simple	Angular	2	component	that	supports	projection	looks	like:

import	{Component,	Input}	from	'@angular/core';

@Component({

		selector:	'a2-projection',

		template:	`

		<p>

				Angular	2	Outer	Component	(Top)

				<ng-content></ng-content>

				Angular	2	Outer	Component	(Bottom)

		</p>

		`

})

export	class	A2Projection	{	}

Here's	a	very	simple	Angular	1.x	directive	that	will	be	projected	into	the	Angular	2
component:

export	function	a1ProjectionContentsDirective()	{

		return	{

				restrict:	'E',

				scope:	{},

				bindToController:	{},

				controller:	A1ProjectionContents,

				controllerAs:	'a1ProjectionContents',

				template:	`<p>{{	a1ProjectionContents.message	}}</p>`

		};

}

class	A1ProjectionContents	{

		message	=	'I	am	an	Angular	1	Directive	"projected"	into	Angular	2';

}

Both	the	component	and	the	directive	must	be	registered	with	Angular	1.x:

Projecting	Angular	1	Content	into	Angular	2	Components

414

import	{A2Projection}	from	'./components/a2-projection';

import	{a1ProjectionContentsDirective}	from

		'./components/a1-projection-contents';

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Name	the	application

const	APPNAME	=	'angular-upgrade-example';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.directive('a2Projection',

				upgradeAdapter.downgradeNg2Component(A2Projection))

		.directive('a1ProjectionContent',	a1ProjectionContentsDirective);

Finally,	using	the	HTML	selectors	is	as	simple	as:

<a2-projection>

		<a1-projection-content></a1-projection-content>

</a2-projection>

Projecting	Angular	1	Content	into	Angular	2	Components

415

Transcluding	Angular	2	Components	into
Angular	1	Directives
Angular	2	components	can	be	transcluded	into	Angular	1.x	directives.

Here	is	a	very	simple	Angular	2	component:

import	{Component}	from	'@angular/core';

@Component	({

		selector:	'a2-transclusion-contents',

		template:	`<p>{{	message	}}</p>`

})

export	class	A2Transclusion	{

		message	=

				'I	am	an	Angular	2	Component	"transcluded"	into	Angular	1.x';

}

Here	is	an	Angular	1.x	directive	that	supports	transclusion:

export	function	a1TransclusionDirective()	{

		return	{

				restrict:	'E',

				transclude:	true,

				scope:	{},

				bindToController:	{},

				controller:	A1Transclusion,

				controllerAs:	'a1ProjectionContents',

				template:	`

				<p>

						<ng-transclude></ng-transclude>

				</p>

				`

		};

}

class	A1Transclusion	{

}

Angular	1.x	needs	to	know	about	both	the	component	and	the	directive:

Transcluding	Angular	2	Components	into	Angular	1	Directives

416

import	{A2Transclusion}	from	'./components/a2-transclusion-contents';

import	{a1TransclusionDirective}	from	'./components/a1-transclusion';

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Name	the	application

const	APPNAME	=	'angular-upgrade-example';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.directive('a2TransclusionContents',

				upgradeAdapter.downgradeNg2Component(A2Transclusion))

		.directive('a1Transclusion',	a1TransclusionDirective);

Finally,	Angular	2	content	can	be	transcluded	into	Angular	1.x	like	so:

<a1-transclude>

		<a2-transclusion-contents></a2-transclusion-contents>

</a1-transclude>

Transcluding	Angular	2	Components	into	Angular	1	Directives

417

Injecting	Across	Frameworks
Angular	1.x	providers/services	can	be	upgraded	and	injected	into	Angular	2.

Simple	Angular	1.x	service:

export	class	A1UpgradeService	{

		data	=	'Hello	from	Angular	1	service';

}

Simple	Angular	2	component	that	will	have	an	Angular	1.x	service	injected	into	it:

import	{Component,	Inject}	from		'@angular/core';

import	{A1UpgradeService}	from	'../services/a1-upgrade-service';

@Component({

		selector:	'a2-using-a1-service',

		template:	`<p>{{	message	}}</p>`

})

export	class	A2UsingA1Service	{

		message	=	'';

		constructor(@Inject('a1UpgradeService')	a1UpgradeService:A1UpgradeService)	{

				this.message	=	a1UpgradeService.data;

		}

}

Attaching	everything	to	Angular	1.x:

Injecting	Across	Frameworks

418

import	{A2UsingA1Service}	from	'./components/a2-using-a1-service';

import	{A1UpgradeService}	from	'./services/a1-upgrade-service';

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Name	the	application

const	APPNAME	=	'angular-upgrade-example';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.directive('a2UsingA1Service',

				upgradeAdapter.downgradeNg2Component(A2UsingA1Service))

		.service('a1UpgradeService',	A1UpgradeService);

Angular	2.x	services	can	be	downgraded	and	injected	into	Angular	1.	In	normal	operation,
Angular	2.x	services	would	be	bootstrapped	with	the	application,	but	because	of	ng-upgrade
being	a	hybrid	mode,	this	is	not	the	case.	The	upgrade	adapter	comes	with	an		addProvider	
method	that	must	be	used	in	the	interim.

Here	is	a	very	simple	Angular	2	service:

import	{Injectable}	from	'@angular/core';

@Injectable()

export	class	A2DowngradeService	{

		fetchData()	{

				return	'some	data';

		}

}

Since	Angular	2	is	bootstrapped	with	the	upgrade	adapter,	there	is	no	place	to	register
Angular	2	services.	Fortunately	the	upgrade	adapter's		addProvider		method	can	do	this:

upgradeAdapter.addProvider(Phones);

Lastly,	Angular	1.x	must	be	informed	about	the	Angular	2	service:

Injecting	Across	Frameworks

419

//	The	service	to	downgrade

import	{A2DowngradeService}	from	'./services/a2-downgrade'

//	Angular	1	Vendor	Import

import	*	as	angular	from	'angular';

//	Import	the	upgradeAdapter	singleton

import	{upgradeAdapter}	from	'./upgrade-adapter';

//	Name	the	application

const	APPNAME	=	'angular-upgrade-example';

//	Register	classic	Angular	1	modules

angular

		.module(APPNAME)

		.factory('a2DowngradeService',

				upgradeAdapter.downgradeNg2Provider(A2DowngradeService));

Using	this	downgraded	service	in	an	Angular	1.x	directive	is	as	simple	as:

import	{A2DowngradeService}	from	'../services/a2-downgrade';

export	function	a1UsingA2ServiceDirective()	{

		return	{

				restrict:	'E',

				scope:	{},

				bindToController:	{},

				controller:	A1UsingA2,

				controllerAs:	'a1UsingA2',

				template:	`{{	a1UsingA2.message	}}`

		};

}

class	A1UsingA2	{

		message:	string;

		constructor(private	a2DowngradeService:	A2DowngradeService)	{

				this.message	=	this.a2DowngradeService.fetchData();

		}

}

Injecting	Across	Frameworks

420

Project	Setup
Proper	tooling	and	setup	is	good	for	any	project,	but	it's	especially	important	for	Angular	due
to	all	of	the	pieces	that	are	involved.	We've	decided	to	use	webpack,	a	powerful	tool	that
attempts	to	handle	our	complex	integrations.	Due	to	the	number	of	parts	of	our	project	that
webpack	touches,	it's	important	to	go	over	the	configuration	to	get	a	good	understanding	of
what	gets	generated	client-side.

Project	Setup

421

https://github.com/webpack/webpack

Webpack
A	modern	JavaScript	web	application	includes	a	lot	of	different	packages	and	dependencies,
and	it's	important	to	have	something	that	makes	sense	of	it	all	in	a	simple	way.

Angular	takes	the	approach	of	breaking	your	application	apart	into	many	different
components,	each	of	which	can	have	several	files.	Separating	application	logic	this	way	is
good	for	the	programmer,	but	can	detract	from	user	experience	since	doing	this	can	increase
page	loading	time.	HTTP2	aims	to	solve	this	problem	in	one	way,	but	until	more	is	known
about	its	effects	we	will	want	to	bundle	different	parts	of	our	application	together	and
compress	it.

Our	platform,	the	browser,	must	continue	to	provide	backwards	compatibility	for	all	existing
code	and	this	necessitates	slow	movement	of	additions	to	the	base	functionality	of
HTML/CSS/JS.	The	community	has	created	different	tools	that	transform	their	preferred
syntax/feature	set	to	what	the	browser	supports	to	avoid	binding	themselves	to	the
constraints	of	the	web	platform.	This	is	especially	evident	in	Angular	applications,	where
TypeScript	is	used	heavily.	Although	we	don't	do	this	in	our	course,	projects	may	also	involve
different	CSS	preprocessors	(sass,	stylus)	or	templating	engines	(jade,	Mustache,	EJS)	that
must	be	integrated.

Webpack	solves	these	problems	by	providing	a	common	interface	to	integrate	all	of	these
tools	and	that	allows	us	to	streamline	our	workflow	and	avoid	complexity.

Webpack

422

http://www.typescriptlang.org/

Installation
The	easiest	way	to	include	webpack	and	its	plugins	is	through	NPM	and	save	it	to	your
	devDependencies	:

npm	install	-D	webpack	ts-loader	html-webpack-plugin	tslint-loader

Setup	and	Usage
The	most	common	way	to	use	webpack	is	through	the	CLI.	By	default,	running	the	command
executes		webpack.config.js		which	is	the	configuration	file	for	your	webpack	setup.

Bundle
The	core	concept	of	webpack	is	the	bundle.	A	bundle	is	simply	a	collection	of	modules,
where	we	define	the	boundaries	for	how	they	are	separated.	In	this	project,	we	have	two
bundles:

	app		for	our	application-specific	client-side	logic
	vendor		for	third	party	libraries

In	webpack,	bundles	are	configured	through	entry	points.	Webpack	goes	through	each	entry
point	one	by	one.	It	maps	out	a	dependency	graph	by	going	through	each	module's
references.	All	the	dependencies	that	it	encounters	are	then	packaged	into	that	bundle.

Packages	installed	through	NPM	are	referenced	using	CommonJS	module	resolution.	In	a
JavaScript	file,	this	would	look	like:

		const	app	=	require('./src/index.ts');

or	TypeScript/ES6	file:

		import	{	Component	}	from	'@angular/core';

We	will	use	those	string	values	as	the	module	names	we	pass	to	webpack.

Let's	look	at	the	entry	points	we	have	defined	in	our	sample	app:

Installation	and	Usage

423

{

		...

		entry:	{

				app:	'./src/index.ts',

				vendor:	[

						'@angular/core',

						'@angular/compiler',

						'@angular/common',

						'@angular/http',

						'@angular/platform-browser',

						'@angular/platform-browser-dynamic',

						'@angular/router',

						'es6-shim',

						'redux',

						'redux-thunk',

						'redux-logger',

						'reflect-metadata',

						'ng2-redux',

						'zone.js',

]

		}

		...

}

The	entry	point	for		app	,		./src/index.ts	,	is	the	base	file	of	our	Angular	application.	If	we've
defined	the	dependencies	of	each	module	correctly,	those	references	should	connect	all	the
parts	of	our	application	from	here.	The	entry	point	for		vendor		is	a	list	of	modules	that	we
need	for	our	application	code	to	work	correctly.	Even	if	these	files	are	referenced	by	some
module	in	our	app	bundle,	we	want	to	separate	these	resources	in	a	bundle	just	for	third
party	code.

Output	Configuration
In	most	cases	we	don't	just	want	to	configure	how	webpack	generates	bundles	-	we	also
want	to	configure	how	those	bundles	are	output.

Often,	we	will	want	to	re-route	where	files	are	saved.	For	example	into	a		bin		or		dist	
folder.	This	is	because	we	want	to	optimize	our	builds	for	production.

Webpack	transforms	the	code	when	bundling	our	modules	and	outputting	them.	We
want	to	have	a	way	of	connecting	the	code	that's	been	generated	by	webpack	and	the
code	that	we've	written.

Server	routes	can	be	configured	in	many	different	ways.	We	probably	want	some	way	of
configuring	webpack	to	take	our	server	routing	setup	into	consideration.

Installation	and	Usage

424

All	of	these	configuration	options	are	handled	by	the	config's		output		property.	Let's	look	at
how	we've	set	up	our	config	to	address	these	issues:

{

		...

		output:	{

				path:	path.resolve(__dirname,	'dist'),

				filename:	'[name].[hash].js',

				publicPath:	"/",

				sourceMapFilename:	'[name].[hash].js.map'

		}

		...

}

Some	options	have	words	wrapped	in	square	brackets.	Webpack	has	the	ability	to
parse	parameters	for	these	properties,	with	each	property	having	a	different	set	of
parameters	available	for	substitution.	Here,	we're	using		name		(the	name	of	the	bundle)
and		hash		(a	hash	value	of	the	bundle's	content).

To	save	bundled	files	in	a	different	folder,	we	use	the		path		property.	Here,		path		tells
webpack	that	all	of	the	output	files	must	be	saved	to		path.resolve(__dirname,	'dist')	.	In
our	case,	we	save	each	bundle	into	a	separate	file.	The	name	of	this	file	is	specified	by	the
	filename		property.

Linking	these	bundled	files	and	the	files	we've	actually	coded	is	done	using	what's	known	as
source	maps.	There	are	different	ways	to	configure	source	maps.	What	we	want	is	to	save
these	source	maps	in	a	separate	file	specified	by	the		sourceMapFilename		property.	The	way
the	server	accesses	the	files	might	not	directly	follow	the	filesystem	tree.	For	us,	we	want	to
use	the	files	saved	under	dist	as	the	root	folder	for	our	server.	To	let	webpack	know	this,
we've	set	the		publicPath		property	to		/	.

Installation	and	Usage

425

Loaders
TypeScript	isn't	core	JavaScript	so	webpack	needs	a	bit	of	extra	help	to	parse	the		.ts		files.
It	does	this	through	the	use	of	loaders.	Loaders	are	a	way	of	configuring	how	webpack
transforms	the	outputs	of	specific	files	in	our	bundles.	Our		ts-loader		package	is	handling
this	transformation	for	TypeScript	files.

Inline
Loaders	can	be	configured	–	inline	–	when	requiring/importing	a	module:

const	app	=	require('ts!./src/index.ts');

The	loader	is	specified	by	using	the		!		character	to	separate	the	module	reference	and	the
loader	that	it	will	be	run	through.	More	than	one	loader	can	be	used	and	those	are	separated
with		!		in	the	same	way.	Loaders	are	executed	right	to	left.

const	app	=	require('ts!tslint!./src/index.ts');

Although	the	packages	are	named		ts-loader	,		tslint-loader	,		style-loader	,	we
don't	need	to	include	the		-loader		part	in	our	config.

Be	careful	when	configuring	loaders	this	way	–	it	couples	implementation	details	of	different
stages	of	your	application	together	so	it	might	not	be	the	right	choice	in	a	lot	of	cases.

Webpack	Config
The	preferred	method	is	to	configure	loaders	through	the		webpack.config.js		file.	For
example,	the	TypeScript	loader	task	will	look	something	like	this:

{

		test:	/\.ts$/,

		loader:	'ts-loader',

		exclude:	/node_modules/

}

Loaders

426

This	runs	the	typescript	compiler	which	respects	our	configuration	settings	as	specified
above.	We	want	to	be	able	to	handle	other	files	and	not	just	TypeScript	files,	so	we	need	to
specify	a	list	of	loaders.	This	is	done	by	creating	an	array	of	tasks.

Tasks	specified	in	this	array	are	chained.	If	a	file	matches	multiple	conditions,	it	will	be
processed	using	each	task	in	order.

{

		...

		module:	{

				rules:	[

						{	test:	/\.ts$/,	loader:	'tslint'	},

						{	test:	/\.ts$/,	loader:	'ts',	exclude:	/node_modules/	},

						{	test:	/\.html$/,	loader:	'raw'	},

						{	test:	/\.css$/,	loader:	'style!css?sourceMap'	},

						{	test:	/\.svg/,	loader:	'url'	},

						{	test:	/\.eot/,	loader:	'url'	},

						{	test:	/\.woff/,	loader:	'url'	},

						{	test:	/\.woff2/,	loader:	'url'	},

						{	test:	/\.ttf/,	loader:	'url'	},

],

				noParse:	[/zone\.js\/dist\/.+/,	/angular2\/bundles\/.+/]

		}

		...

}

Each	task	has	a	few	configuration	options:

test	-	The	file	path	must	match	this	condition	to	be	handled.	This	is	commonly	used	to
test	file	extensions	eg.		/\.ts$/	.

loader	-	The	loaders	that	will	be	used	to	transform	the	input.	This	follows	the	syntax
specified	above.

exclude	-	The	file	path	must	not	match	this	condition	to	be	handled.	This	is	commonly
used	to	exclude	file	folders,	e.g.		/node_modules/	.

include	-	The	file	path	must	match	this	condition	to	be	handled.	This	is	commonly	used
to	include	file	folders.	eg.		path.resolve(__dirname,	'app/src')	.

Pre-Loaders

The	preLoaders	array	works	just	like	the	loaders	array	only	it	is	a	separate	task	chain	that	is
executed	before	the	loaders	task	chain.

Non	JavaScript	Assets

Loaders

427

Webpack	also	allows	us	to	load	non	JavaScript	assets	such	as:	CSS,	SVG,	font	files,	etc.	In
order	to	attach	these	assets	to	our	bundle	we	must	require/import	them	within	our	app
modules.	For	example:

import	'./styles/style.css';

//	or

const	STYLES	=	require('./styles/style.css');

Other	Commonly	Used	Loaders

raw-loader	-	returns	the	file	content	as	a	string.

url-loader	-	returns	a	base64	encoded	data	URL	if	the	file	size	is	under	a	certain
threshold,	otherwise	it	just	returns	the	file.

css-loader	-	resolves		@import		and		url		references	in	CSS	files	as	modules.

style-loader	-	injects	a	style	tag	with	the	bundled	CSS	in	the		<head>		tag.

Loaders

428

Plugins
Plugins	allow	us	to	inject	custom	build	steps	during	the	bundling	process.

A	commonly	used	plugin	is	the		html-webpack-plugin	.	This	allows	us	to	generate	HTML	files
required	for	production.	For	example	it	can	be	used	to	inject	script	tags	for	the	output
bundles.

new	HtmlWebpackPlugin({

		template:	'./src/index.html',

		inject:	'body',

		minify:	false

});

Plugins

429

Summary
When	we	put	everything	together,	our	complete		webpack.config.js		file	looks	something	like
this:

'use	strict';

const	path	=	require("path");

const	webpack	=	require('webpack');

const	HtmlWebpackPlugin	=	require('html-webpack-plugin');

const	basePlugins	=	[

		new	webpack.optimize.CommonsChunkPlugin('vendor',	'[name].[hash].bundle.js'),

		new	HtmlWebpackPlugin({

				template:	'./src/index.html',

				inject:	'body',

				minify:	false

		})

];

const	envPlugins	=	{

				production:	[

								new	webpack.optimize.UglifyJsPlugin({

												compress:	{

																warnings:	false

												}

								})

],

				development:	[]

};

const	plugins	=	basePlugins.concat(envPlugins[process.env.NODE_ENV]	||	[]);

module.exports	=	{

		entry:	{

				app:	'./src/index.ts',

				vendor:	[

						'@angular/core',

						'@angular/compiler',

						'@angular/common',

						'@angular/http',

						'@angular/platform-browser',

						'@angular/platform-browser-dynamic',

						'@angular/router',

						'es6-shim',

						'redux',

						'redux-thunk',

						'redux-logger',

Summary

430

						'reflect-metadata',

						'ng2-redux',

						'zone.js',

]

		},

		output:	{

				path:	path.resolve(__dirname,	'dist'),

				filename:	'[name].[hash].js',

				publicPath:	"/",

				sourceMapFilename:	'[name].[hash].js.map'

		},

		devtool:	'source-map',

		resolve:	{

				extensions:	['.webpack.js',	'.web.js',	'.ts',	'.js']

		},

		plugins:	plugins,

		module:	{

				rules:	[

						{	test:	/\.ts$/,	loader:	'tslint'	},

						{	test:	/\.ts$/,	loader:	'ts',	exclude:	/node_modules/	},

						{	test:	/\.html$/,	loader:	'raw'	},

						{	test:	/\.css$/,	loader:	'style!css?sourceMap'	},

						{	test:	/\.svg/,	loader:	'url'	},

						{	test:	/\.eot/,	loader:	'url'	},

						{	test:	/\.woff/,	loader:	'url'	},

						{	test:	/\.woff2/,	loader:	'url'	},

						{	test:	/\.ttf/,	loader:	'url'	},

],

				noParse:	[/zone\.js\/dist\/.+/,	/angular2\/bundles\/.+/]

		}

}

Going	Further
Webpack	also	does	things	like	hot	code	reloading	and	code	optimization	which	we	haven't
covered.	For	more	information	you	can	check	out	the	official	documentation.	The	source	is
also	available	on	Github.

Summary

431

http://webpack.github.io/docs/
https://github.com/webpack/webpack

NPM	Scripts	Integration
NPM	allows	us	to	define	custom	scripts	in	the		package.json		file.	These	can	then	execute
tasks	using	the	NPM	CLI.

We	rely	on	these	scripts	to	manage	most	of	our	project	tasks	and	webpack	fits	in	as	well.

The	scripts	are	defined	in	the		scripts		property	of	the		package.json		file.	For	example:

...

		scripts:	{

				"clean":	"rimraf	dist",

				"prebuild":	"npm	run	clean",

				"build":	"NODE_ENV=production	webpack",

		}

...

NPM	allows	pre	and	post	task	binding	by	prepending	the	word		pre		or		post		respectively	to
the	task	name.	Here,	our		prebuild		task	is	executed	before	our		build		task.

We	can	run	an	NPM	script	from	inside	another	NPM	script.

To	invoke	the		build		script	we	run	the	command		npm	run	build	:

1.	 The		prebuild		task	executes.
2.	 The		prebuild		task	runs	the		clean		task,	which	executes	the		rimraf	dist		command.
3.	 	rimraf		(an	NPM	package)	recursively	deletes	everything	inside	a	specified	folder.
4.	 The		build		task	is	executed.	This	sets	the		NODE_ENV		environment	variable	to

	production		and	starts	the	webpack	bundling	process.
5.	 Webpack	generates	bundles	based	on	the		webpack.config.js		available	in	the	project

root	folder.

NPM	Scripts	Integration

432

Angular	CLI
With	all	of	the	new	features	Angular	takes	advantage	of,	like	static	typing,	decorators	and
ES6	module	resolution,	comes	the	added	cost	of	setup	and	maintenance.	Spending	a	lot	of
time	with	different	build	setups	and	configuring	all	of	the	different	tools	used	to	serve	a
modern	JavaScript	application	can	really	take	a	lot	of	time	and	drain	productivity	by	not
being	able	to	actually	work	on	the	app	itself.

Seeing	the	popularity	of	ember-cli,	Angular	decided	they	would	provide	their	own	CLI	to
solve	this	problem.	Angular	CLI	is	geared	to	be	the	tool	used	to	create	and	manage	your
Angular	app.	It	provides	the	ability	to:

create	a	project	from	scratch
scaffold	components,	directives,	services,	etc.
lint	your	code
serve	the	application
run	your	unit	tests	and	end	to	end	tests.

The	Angular	CLI	currently	only	generates	scaffolding	in	TypeScript,	with	other	dialects
to	come	later.

Angular	CLI

433

http://www.ember-cli.com/
https://github.com/angular/angular-cli

Setup

Prerequisites
Angular	CLI	is	currently	only	distributed	through	npm	and	requires	Node	version	4	or	greater.

Installation
The	Angular	CLI	can	be	installed	with	the	following	command:

	npm	install	-g	angular-cli	

Setup

434

Creating	a	New	App
Use	the		ng	new	[app-name]		command	to	create	a	new	app.	This	will	generate	a	basic	app	in
the	folder	of	the	app	name	provided.	The	app	has	all	of	the	features	available	to	work	with
the	CLI	commands.	Creating	an	app	may	take	a	few	minutes	to	complete	since	npm	will
need	to	install	all	of	the	dependencies.	The	directory	is	automatically	set	up	as	a	new	git
repository	as	well.	If	git	is	not	your	version	control	of	choice,	simply	remove	the	.git	folder
and	.gitignore	file.

File	and	Folder	Setup
The	generated	app	folder	will	look	like	this:

Creating	a	New	App

435

Figure:	App	folder

Application	configuration	is	stored	in	different	places,	some	located	in	the	config	folder,	such
as	test	configuration,	and	some	being	stored	in	the	project	root	such	as	linting	information
and	build	information.	The	CLI	stores	application-specific	files	in	the	src	folder	and	Angular-
specific	code	in	the	src/app	folder.	Files	and	folders	generated	by	the	CLI	will	follow	the
official	style	guide.

Creating	a	New	App

436

https://angular.io/styleguide

Warning:	The	CLI	relies	on	some	of	the	settings	defined	in	the	configuration	files	to	be
able	to	execute	the	commands.	Take	care	when	modifying	them,	particularly	the
package.json	file.

The	CLI	has	installed	everything	a	basic	Angular	application	needs	to	run	properly.	To	make
sure	everything	has	run	and	installed	correctly	we	can	run	the	server.

Creating	a	New	App

437

Serving	the	App
The	CLI	provides	the	ability	to	serve	the	app	with	live	reload.	To	serve	an	application,	simply
run	the	command		ng	serve	.	This	will	compile	the	app	and	copy	all	of	the	application-
specific	files	to	the	dist	folder	before	serving.

By	default,		ng	serve		serves	the	application	locally	on	port	4200	(http://localhost:4200)	but
this	can	be	changed	by	using	a	command	line	argument:		ng	serve	--port=8080	.

Serving	the	App

438

http://localhost:4200

Creating	Components
The	CLI	can	scaffold	Angular	components	through	the		generate		command.	To	create	a
new	component	run:

	ng	generate	component	[component-name]	

Executing	the	command	creates	a	folder,	[component-name],	in	the	project's		src/app		path
or	the	current	path	the	command	is	executed	in	if	it's	a	child	folder	of	the	project.	The	folder
has	the	following:

	[component-name].component.ts		the	component	class	file
	[component-name].component.css		for	styling	the	component
	[component-name].component.html		component	html
	[component-name].component.spec.ts		tests	for	the	component
	index.ts		which	exports	the	component

Creating	Components

439

Creating	Routes
The		ng	g	route	[route-name]		command	will	spin	up	a	new	folder	and	route	files	for	you.

At	the	time	of	writing	this	feature	was	temporarily	disabled	due	to	ongoing	changes
happening	with	Angular	routing.

Creating	Routes

440

Creating	Other	Things
The	CLI	can	scaffold	other	Angular	entities	such	as	services,	pipes	and	directives	using	the
generate	command.

	ng	generate	[entity]	[entity-name]	

This	creates	the	entity	at		src/app/[entity-name].[entity].ts		along	with	a	spec	file,	or	at	the
current	path	if	the	command	is	executed	in	a	child	folder	of	the	project.	The	CLI	provides
blueprints	for	the	following	entities	out	of	the	box:

Item Command Files	generated

Component: 	ng	g	component

[name]	
component,	HTML,	CSS,	test	spec	files

Directive: 	ng	g	directive

[name]	
component,	test	spec	files

Pipe: 	ng	g	pipe	[name]	 component,	test	spec	files

Service: 	ng	g	service

[name]	
component,	test	spec	files

Class: 	ng	g	class	[name]	 component,	test	spec	files

Route: 	ng	g	route	[name]	
component,	HTML,	CSS,	test	spec	files	(in	new
folder)

Creating	Other	Things

441

Testing
Apps	generated	by	the	CLI	integrate	automated	tests.	The	CLI	does	this	by	using	the	Karma
test	runner.

Unit	Tests
To	execute	unit	tests,	run		ng	test	.	This	will	run	all	the	tests	that	are	matched	by	the	Karma
configuration	file	at		config/karma.conf.js	.	It's	set	to	match	all	TypeScript	files	that	end	in
	.spec.ts		by	default.

End-to-End	Tests
End-to-end	tests	can	be	executed	by	running		ng	e2e	.	Before	end-to-end	tests	can	be
performed,	the	application	must	be	served	at	some	address.	Angular	CLI	uses	protractor.	It
will	attempt	to	access		localhost:4200		by	default;	if	another	port	is	being	used,	you	will	have
to	update	the	configuration	settings	located	at		config/protractor.conf.js	.

Testing

442

https://karma-runner.github.io

Linting
To	encourage	coding	best	practices	Angular	CLI	provides	built-in	linting.	By	default	the	app
will	look	at	the	project's		tslint.json		for	configuration.	Linting	can	be	executed	by	running
the	command		ng	lint	.

For	a	reference	of	tslint	rules	have	a	look	at:	https://palantir.github.io/tslint/rules/.

Linting

443

https://palantir.github.io/tslint/rules/

CLI	Command	Overview
One	of	the	advantages	of	using	the	Angular	CLI	is	that	it	automatically	configures	a	number
of	useful	tools	that	you	can	use	right	away.	To	get	more	details	on	the	options	for	each	task,
use		ng	--help	.

Linting
	ng	lint		lints	the	code	in	your	project	using	tslint.	You	can	customize	the	rules	for	your
project	by	editing		tslint.json	.

You	can	switch	some	of	these	to	use	your	preferred	tool	by	editing	the	scripts	in
	package.json	.

Testing
	ng	test		triggers	a	build	and	then	runs	the	unit	tests	set	up	for	your	app	using	Karma.	Use
the		--watch		option	to	rebuild	and	retest	the	app	automatically	whenever	source	files
change.

Build
	ng	build		will	build	your	app	(and	minify	your	code)	and	place	it	into	the	default	output	path,
	dist/	.

Serve
	ng	serve		builds	and	serves	your	app	on	a	local	server	and	will	automatically	rebuild	on	file
changes.	By	default,	your	app	will	be	served	on	http://localhost:4200/.

Include		--port	[number]		to	serve	your	app	on	a	different	HTTP	port.

E2E

Once	your	app	is	served,	you	can	run	end-to-end	tests	using		ng	e2e	.	The	CLI	uses
Protractor	for	these	tests.

CLI	Command	Overview

444

https://palantir.github.io/tslint/
http://karma-runner.github.io/
http://localhost:4200/
https://angular.github.io/protractor/

Deploy
	ng	deploy		deploys	to	GitHub	pages	or	Firebase.

CLI	Command	Overview

445

Adding	Third	Party	Libraries
The	CLI	generates	development	automation	code	which	has	the	ability	to	integrate	third
party	libraries	into	the	application.	Packages	are	installed	using		npm		and	the	development
environment	is	setup	to	check	the	installed	libraries	mentioned	in		package.json		and	bundle
these	third	party	libraries	within	the	application.	For	more	information	see
https://github.com/angular/angular-cli#3rd-party-library-installation

Adding	Third	Party	Libraries

446

https://github.com/angular/angular-cli#3rd-party-library-installation

Integrating	an	Existing	App
Apps	that	were	created	without	CLI	can	be	integrated	to	use	CLI	later	on.	This	is	done	by
going	to	the	existing	app's	folder	and	running		ng	init	.

Since	the	folder	structure	for	an	existing	app	might	not	follow	the	same	format	as	one
created	by	the	CLI,	the		init		command	has	some	configuration	options.

	--source-dir		identifies	the	relative	path	to	the	source	files	(default	=	src)
	--prefix		identifies	the	path	within	the	source	dir	that	Angular	application	files	reside
(default	=	app)
	--style		identifies	the	path	where	additional	style	files	are	located	(default	=	css).

Integrating	an	Existing	App

447

Web	Accessibility	in	Angular
Accessibility	is	something	that	web	developers	need	to	always	be	aware	of,	and	Angular
applications	are	no	exception.	While	the	approach	and	key	concepts	are	largely	the	same	as
with	other	frameworks,	it's	important	to	examine	what	differences	Angular	adds	to	the
equation.

Accessibility	in	Angular

448

Why	Accessibility
While	making	websites	accessible	can	lead	to	more	time	spent	in	development,	there	are
many	reasons	why	you	should	be	making	your	application	accessible.

Reaching	out	to	everyone
Multiple	studies	suggest	that	around	15-20%	of	the	population	are	living	with	a	disability	of
some	kind .	In	comparison,	that	number	is	higher	than	any	single	browser	demographic
currently,	other	than	Chrome .	Not	considering	those	users	when	developing	an	application
means	excluding	a	large	number	of	people	from	being	able	use	it	comfortable	or	at	all.

Overlap	with	User	Experience	and	SEO
Sites	that	employ	techniques	to	make	their	site	accessible	will	guarantee	that	it	matches	a
minimum	standard	of	usability	for	everyone.	Features	originally	intended	for	accessibility	are
often	appreciated	by	all	users,	voice	control	modes	for	phones	being	one	such	example.

In	addition	to	this,	accessibility	techniques	such	as	semantic	markup	help	search	engines
understand	the	application	better,	leading	to	improved	visibility.

Accessibility	Laws
Countries	around	the	world	have	different	accessibility	rules	centered	around	compliance	of
two	main	sets	of	guidelines:	Web	Content	Accessibilities	(WCAG)	2.0	and	Section	508.	Not
being	in	compliance	of	these	rules	exposes	you	to	liability.

1.	 WHO.	"Report	on	Disability".	2011
Eurostat.	"Prevalence	of	basic	activity	difficulties	or	disability".	2012
US	Census	Bureau.	"Anniversary	of	Americans	with	Disabilities	Act:	July	26".	2012

2.	 Statcounter.	September	2016

1
2

Why	Make	my	Application	Accessible?

449

https://www.w3.org/WAI/WCAG20/glance/
https://www.section508.gov/
http://apps.who.int/iris/bitstream/10665/70670/1/WHO_NMH_VIP_11.01_eng.pdf
http://www.census.gov/newsroom/releases/archives/facts_for_features_special_editions/cb12-ff16.html
http://gs.statcounter.com/#all-browser_version_partially_combined-ww-monthly-201509-201609

Key	Concerns	of	Accessible	Web
Applications
It's	best	to	focus	on	the	following	three	areas	when	making	a	web	application	accessible:

Semantic	Markup	-	Allows	the	application	to	be	understood	on	a	more	general	level
rather	than	just	details	of	whats	being	rendered
Keyboard	Accessibility	-	Applications	must	still	be	usable	when	using	only	a	keyboard
Visual	Assistance	-	color	contrast,	focus	of	elements	and	text	representations	of	audio
and	events

Key	Concerns	of	Accessible	Web	Applications

450

Semantic	Markup

Using	Proper	HTML	Elements	and	Attributes
A	common	trap	when	structuring	html	is	using	too	many	divs	and	marking	them	up	with
classes	or	ids	to	indicate	their	role,	for	example:

@Component({

		selector:	'ngc2-app'

		template:	`

				<div	class="header">

						<div	class="navigation">

								<div	class="item"><a	[routerLink]="['']"><img	src="https://angular.io/resource

s/images/logos/angular2/angular.svg"	width="40"></div>

								<div	class="item"><a	[routerLink]="['services']">Services</div>

								<div	class="item"><a	[routerLink]="['process']">Process</div>

								<div	class="item"><a	[routerLink]="['work']">Work</div>

						</div>

				</div>

				<router-outlet	class="page-content">

				</router-outlet>

		`,

})

View	Example

While	it	might	be	obvious	to	someone	reading	the	HTML	or	using	the	application	what	the
purpose	of	each	element	is,	the	class	names	don't	have	any	semantic	meaning	for	browsers
and	screen	readers.	We	can	give	them	more	information	by	using	the	proper	HTML
elements	instead.

Semantic	Markup

451

http://plnkr.co/edit/cm3wBDRqIrmxpECiQhg7?p=info

@Component({

		selector:	'ngc2-app',

		template:	`

				<header>

						<nav>

								

										<a	[routerLink]="['']"><img	src="https://angular.io/resources/images/log

os/angular2/angular.svg"	width="40"	alt="Angular	logo">

										<a	[routerLink]="['services']">Services

										<a	[routerLink]="['process']">Process

										<a	[routerLink]="['work']">Work

								

						</nav>

				</header>

				<main	aria-live="polite">

						<router-outlet>

						</router-outlet>

				</main>

		`

})

View	Example

Here,	we	use	the		header		element	instead	of	a		div	,	which	lets	the	browser	know	that	the
elements	within	provide	information	about	the	site	as	a	whole	rather	than	about	the	specific
page.

We	replace	another		div		with	the		nav		element,	which	lets	the	browser	know	the	elements
within	are	related	to	accessing	different	parts	of	the	page	or	site.

We	also	nest		router-outlet		within	a		main		element,	which	tells	the	browser	that	the
content	loaded	into	the	router	outlet	is	the	main	content	of	the	page.

There	are	a	couple	of	new	attributes	on	different	elements	as	well	to	give	the	browser	even
more	information.	The		alt		attribute	has	been	added	to	the	image	to	let	the	browser	know
that	it's	a	logo	image.	There's	also	an		aria-live		attribute	on	the		main		element.

This	attribute	is	part	of	larger	spec	known	as	Accessible	Rich	Internet	Applications	(WAI-
ARIA)	which	we'll	go	over	in	detail.	This	is	something	that	lets	screen	readers	know	that	the
content	within	the		main		tag	will	be	updated	on	the	client-side	after	the	page	has	loaded	and
needs	to	be	watched	for	updates.

Roles	and	ARIA

Semantic	Markup

452

https://plnkr.co/edit/LHFNBsdcfbRPFnQg1DE8?p=preview
https://www.w3.org/TR/wai-aria/

The	ARIA	spec	was	created	as	a	way	for	content	authors	a	way	to	provide	additional	context
to	the	semantics	of	their	application	rather	than	just	details	on	how	to	render	the	content.
This	allows	assistive	technology	to	understand	what's	going	on	inside	an	application	and
relay	that	information	in	a	structured	and	streamlined	format	for	users	with	disabilities.

One	of	the	main	concepts	in	the	ARIA	spec	is	the	role.	A	role	defines	what	the	purpose	of	an
html	element	is	within	the	context	of	that	document	or	application.	Roles	are	defined	by
adding	an	attribute	to	an	html	element	ie.		role="main"		or	are	defined	by	default	depending
on	the	html	element.

Some	examples	of	roles	are	list,	button	or	navigation	which	are	the	default	roles	of		ul	,
	button		and		nav		respectively.	Sometimes	however,	you	may	not	want	or	be	able	to	use	the
standard	html	element	to	represent	these	objects	in	your	application,	for	example,	you	may
want	to	create	your	own	button	component	with	it's	own	distinct	logic.	In	this	case	you	can
make	use	of	the		role		attribute:

Semantic	Markup

453

https://www.w3.org/TR/wai-aria/roles
https://www.w3.org/TR/wai-aria/roles#list
https://www.w3.org/TR/wai-aria/roles#button
https://www.w3.org/TR/wai-aria/roles#navigation

@Component({

		selector:	'ngc2-notification-button',

		template:	`

				{{label}}

		`,

		styles:	[`

					:host	{

						display:	flex;

						width:	80px;

						height:	80px;

						justify-content:	center;

						align-items:	center;

						background-color:	yellow;

						border-radius:	40px;

				}

				:host:hover	{

						cursor:	pointer;

				}

		`]

})

export	class	NotificationButtonComponent	{

		@Input()

		message	=	'Alert!';

		@Input()

		label	=	'Notify';

		constructor(private	notification:	NotificationService)	{	}

		@HostListener('click',	[])

		notify()	{

				this.notification.notify(this.message)

		}

}

View	Example

This	lets	you	create	a	component	that	has	the	same	semantics	as	a		button		element	to
screen	readers	and	browsers,	but	now	have	the	opportunity	to	fully	control	the	styling	of	that
component	as	well	as	inject	your	own	custom	logic.

ARIA	attributes

Some	native	HTML	tags	have	attributes	that	providers	extra	context	on	what's	being
displayed	on	the	browser.	For	example,	the		img		tag's		alt		attribute	lets	the	reader	know
what	is	being	shown	using	a	short	description.

Semantic	Markup

454

https://plnkr.co/edit/aAjNnmeaEPbdfIWo9hPT?p=preview

However,	native	tags	don't	cover	all	cases.	This	is	where	ARIA	fits	in.	ARIA	attributes	can
provide	context	on	what	roles	specific	elements	have	in	the	application	or	on	how	elements
within	the	document	relate	to	each	other.

One	example	of	this	is	modals.	Native	modals	provided	by	different	platforms	such	as	web
browsers	often	have	limited	customization	options,	which	can	make	for	a	poor	experience.
This	necessitates	the	creation	of	custom	modals.

A	modal	component	can	be	given	the		role		of	dialog	or	alertdialog	to	let	the	browser	know
that	that	component	is	acting	as	a	modal.	The	modal	component	template	can	use	the	ARIA
attributes		aria-labelledby		and		aria-described		to	describe	to	readers	what	the	title	and
purpose	of	the	modal	is.

app.component.ts

@Component({

				selector:	'ngc2-app',

				template:	`

						<ngc2-notification-button

								message="Hello!"

								label="Greeting"

								role="button">

						</ngc2-notification-button>

						<ngc2-modal

								[title]="modal.title"

								[description]="modal.description"

								[visible]="modal.visible"

								(close)="modal.close()">

						</ngc2-modal>

				`

})

export	class	AppComponent	{

		constructor(private	modal:	ModalService)	{	}

}

notification-button.component.ts

Semantic	Markup

455

https://www.w3.org/TR/wai-aria/roles#dialog
https://www.w3.org/TR/wai-aria/roles#alertdialog

@Component({

		selector:	'ngc2-modal',

		template:	`

				<div

						role="dialog"

						aria-labelledby="modal-title"

						aria-describedby="modal-description">

						<div	id="modal-title">{{title}}</div>

						<p	id="modal-description">{{description}}</p>

						<button	(click)="close.emit()">OK</button>

				</div>

		`

})

export	class	ModalComponent	{

		...

}

View	Example

ARIA	tags	can	enhance	the	accessibility	of	an	application,	but	should	by	no	means	be	the
only	accessibility	consideration.	More	information	is	available	in	the	WAI-ARIA	specification.

Semantic	Markup

456

https://plnkr.co/edit/Vvu62nDZ18IkqiAop2A9?p=preview
https://www.w3.org/TR/wai-aria/

Keyboard	Accessibility
Keyboard	accessibility	is	the	ability	of	your	application	to	be	interacted	with	using	just	a
keyboard.	The	more	streamlined	the	site	can	be	used	this	way,	the	more	keyboard
accessible	it	is.	Keyboard	accessibility	is	one	of	the	largest	aspects	of	web	accessibility
since	it	targets:

those	with	motor	disabilities	who	can't	use	a	mouse
users	who	rely	on	screen	readers	and	other	assistive	technology,	which	require
keyboard	navigation
those	who	prefer	not	to	use	a	mouse

Focus
Keyboard	interaction	is	driven	by	something	called	focus.	In	web	applications,	only	one
element	on	a	document	has	focus	at	a	time,	and	keypresses	will	activate	whatever	function
is	bound	to	that	element.	The	currently	focused	element	can	be	accessed	programmatically
through	the		document.activeElement		DOM	method.

Visually,	an	element	with	focus	is	represented	by	default	with	a	glowing	border	around	the
element:

Figure:	Focus	border

This	border	can	be	styled	with	CSS	using	the		outline		property,	but	it	should	not	be
removed.	Elements	can	also	be	styled	using	the		:focus		psuedo-selector.

Tabbing

Keyboard	Accessibility

457

http://www.outlinenone.com/

The	most	common	way	of	moving	focus	along	the	page	is	through	the		tab		key.	Elements
will	be	traversed	in	the	order	they	appear	in	the	document	outline	-	so	that	order	must	be
carefully	considered	during	development.	By	default,	only	links,	buttons	and	form	controls
can	receive	keyboard	focus.

Whenever	possible,	developers	should	bind	behaviour	to	elements	that	can	natively	receive
focus,	such	as	using	a		button		rather	than	a		div	.	They	should	also	adjust	the	source	order
of	elements	to	change	the	tab	traversal	order.

There	may,	however,	be	cases	where	you'll	want	to	change	the	default	behaviour	or	tab
order.	This	can	be	done	through	the		tabindex		attribute.	The		tabindex		can	be	given	the
values:

less	than	zero	-	to	let	readers	know	that	an	element	should	be	focusable	but	not
keyboard	accessible
0	-	to	let	readers	know	that	that	element	should	be	accessible	by	keyboard
greater	than	zero	-	to	let	readers	know	the	order	in	which	the	focusable	element	should
be	reached	using	the	keyboard.	Order	is	calculated	from	lowest	to	highest.

Altering		tabindex		should	be	done	carefully,	and	must	also	be	paired	with	keypress	support
for		space		and		enter	.

Transitions

The	majority	of	transitions	that	happen	in	an	Angular	application	will	not	involve	a	page
reload.	This	means	that	developers	will	need	to	carefully	manage	what	happens	to	focus	in
these	cases.

It's	important	that	if	some	action	involves	a	transition	away	from	the	natural	page	flow,	then
focus	should	be	handled	as	well.

Modals	are	one	example	of	this:

Keyboard	Accessibility

458

http://webaim.org/techniques/keyboard/tabindex

@Component({

		selector:	'ngc2-modal',

		template:	`

				<div

						role="dialog"

						aria-labelledby="modal-title"

						aria-describedby="modal-description">

						<div	id="modal-title">{{title}}</div>

						<p	id="modal-description">{{description}}</p>

						<button	(click)="close.emit()">OK</button>

				</div>

		`,

})

export	class	ModalComponent	{

		constructor(private	modal:	ModalService,	private	element:	ElementRef)	{	}

		ngOnInit()	{

				this.modal.visible$.subscribe(visible	=>	{

						if(visible)	{

								setTimeout(()	=>	{

										this.element.nativeElement.querySelector('button').focus();

								},	0);

						}

				})

		}

}

View	Example

In	this	example,	we	see	that	when	the	modal	becomes	visible,	the		OK		button	immediately
receives	focus.	This	streamlines	the	experience	for	keyboard	users	or	screen	readers	to
match	the	experience	given	to	mouse	users	or	those	without	screen	readers.

Keyboard	Accessibility

459

https://plnkr.co/edit/Vvu62nDZ18IkqiAop2A9?p=preview

Visual	Assistance
One	large	category	of	disability	is	visual	impairment.	This	includes	not	just	the	blind,	but
those	who	are	color	blind	or	partially	sighted,	and	require	some	additional	consideration.

Color	Contrast
When	choosing	colors	for	text	or	elements	on	a	website,	the	contrast	between	them	needs
to	be	considered.	For	WCAG	2.0	AA,	this	means	that	the	contrast	ratio	for	text	or	visual
representations	of	text	needs	to	be	at	least	4.5:1.

There	are	tools	online	to	measure	the	contrast	ratio	such	as	this	color	contrast	checker	from
WebAIM	or	be	checked	with	using	automation	tests.

Visual	Information
Color	can	help	a	user's	understanding	of	information,	but	it	should	never	be	the	only	way	to
convey	information	to	a	user.	For	example,	a	user	with	red/green	color-blindness	may	have
trouble	discerning	at	a	glance	if	an	alert	is	informing	them	of	success	or	failure.

Always	be	sure	that	color	is	not	the	only	way	information	is	being	conveyed	to	the	user.

Audiovisual	Media
Audiovisual	elements	in	the	application	such	as	video,	sound	effects	or	audio	(ie.	podcasts)
need	related	textual	representations	such	as	transcripts,	captions	or	descriptions.	They	also
should	never	auto-play	and	playback	controls	should	be	provided	to	the	user.

Visual	Assistance

460

https://www.smashingmagazine.com/2016/06/improving-ux-for-color-blind-users/
https://www.w3.org/TR/WCAG20/#visual-audio-contrast-contrast
http://webaim.org/resources/contrastchecker/

Testing	for	Accessibility
Automated	accessibility	checkers	can	help	you	find	problems	with	your	application,	but	they
can	also	produce	noisy,	overwhelming	results	that	may	not	surface	the	most	important
issues	affecting	the	usability	of	your	app.	It's	therefore	important	to	know	how	to	test	for
accessibility	yourself.

There	are	many	different	concerns	to	consider	when	testing	your	application	for	accessibility.
The	following	questions	can	guide	your	accessibility	testing	and	provide	concrete	items	for
evaluation:

Is	my	Application	Readable?
Is	my	Application	Predictable?
Is	my	Application	Navigable?

One	excellent	method	for	covering	the	bases	of	an	accessible	application	is	to	test	with
screen	readers.

Testing	for	Accessibility

461

Is	my	Application	Readable?
Users	should	be	able	to	read	and	understand	the	information	presented	by	your	application.
Your	application	should	also	be	flexible	enough	to	meet	your	user's	reading	needs.	Check	in
particular:

Can	the	page	be	resized	to	200%	in	the	browser	and	still	be	usable?
Are	text	sizes	appropriate	across	variable	device	widths?
Can	the	page	still	be	read	if	the	user	is	overriding	your	fonts	with	their	own?	(Try	testing
this	using	the	Chrome	addon	OpenDyslexic)
Does	the	text	need	to	be	adjusted	for	colour	or	weight	to	provide	adequate	contrast?
(Try	your	most	used	fonts	in	a	contrast	checker)

Is	my	Application	Readable?

462

http://opendyslexic.org/
http://contrastchecker.com/

Is	my	Application	Predictable?
Users	should	be	able	to	reasonably	anticipate	how	an	application	behaves,	and	they	should
remain	in	control	of	their	experience	at	all	times.	Check	for	the	following:

Has	auto-play	been	turned	off	on	all	sliders,	video	and	audio?	Are	playback	controls
available?
Will	the	user	be	warned	if	a	context	switch	occurs	(e.g.	a	new	window	opening)?
Can	interruptions	(such	as	alerts	or	page	updates)	be	postponed	or	suppressed	by	the
user?
Does	the	user	have	enough	time	to	read	alerts?	Does	the	user's	screen	reader	have
enough	time?

Is	my	Application	Predictable?

463

Is	my	Application	Navigable?
One	of	the	key	accessibility	features	for	any	application	is	keyboard	navigability.	Because
many	forms	of	assistive	technology	rely	on	keyboard	controls	exclusively,	testing	for
keyboard	support	is	a	good	thing	to	prioritize.	Check	in	particular:

Can	basic	tasks	and	workflows	be	completed	using	only	a	keyboard?
Can	all	forms	be	completed	using	only	a	keyboard?
When	an	element	has	tab	focus,	is	there	a	visual	indicator?
If	a	modal	or	overlay	opens,	is	keyboard	focus	trapped	inside	the	new	context	until	it	is
closed?

Is	my	Application	Navigable?

464

Testing	with	Screen	Readers
The	only	way	to	be	certain	that	your	application	is	usable	by	screen	readers	and	other
assistive	technologies	is	to	check	for	yourself.

To	test	with	a	screen	reader,	you	will	need	to	use	a	screen	reading	program	and	navigate
your	page	using	keyboard	commands	specific	to	that	program.	When	testing	with	a	screen
reader,	do	not	rely	on	Chrome.	Most	screen	reader	users	do	not	use	Chrome	as	their	main
browser,	and	browser-specific	differences	will	occur	in	testing.	Internet	Explorer	or	Firefox
are	preferred.

Testing	on	Mac	using	VoiceOver
VoiceOver	is	OSX's	built-in	screen	reader,	and	therefore	often	the	easiest	option	for
developers.

VoiceOver	can	be	turned	on	and	off	with	the	keyboard	shortcut		CMD	+	F5		and	also	through
the		System	Preferences		menu.	In	the	System	Preferences	menu,	you	can	also	adjust	the
speed	at	which	VoiceOver	will	read	to	you.	While	testing,	it	is	helpful	to	set	it	to	a	higher
speed.

WebAIM's	guide	for	testing	with	VoiceOver	provides	detailed	usage	instructions.

Testing	on	Windows	using	NVDA
NVDA	is	a	free	(but	donation	funded)	screen	reader	for	Windows	platforms.

Once	NVDA	has	been	downloaded	and	installed,	you	can	start	it	with	the	keyboard
command		Ctrl	+	Alt	+	N	.

WebAIM's	guide	for	testing	with	NVDA	provides	detailed	usage	instructions.

What	to	look	for
When	testing	with	a	screen	reader,	you	are	testing	a	different	form	of	user	experience.	As
with	any	UX	consideration,	your	objective	should	be	to	ensure	that	screen	reader	users	will
find	your	application	sensible	and	usable.

Testing	with	Screen	Readers

465

http://webaim.org/projects/screenreadersurvey6/
http://webaim.org/articles/voiceover/
http://www.nvaccess.org/
http://webaim.org/articles/nvda/

It	is	likely	that	problems	will	jump	out	at	you	when	you	start,	but	check	in	particular	for	the
following:

Image	names	are	not	read	out	by	the	screen	reader;	they	have	appropriate	descriptive
text
Elements	that	are	inaccessible	to	the	screen	reader	are	not	necessary	to	the	user's
understanding
Blocks	of	repeating	text	(e.g.	menus)	can	be	skipped
The	page	is	read	in	the	intended/visual	order	(not	source	order)
Forms	can	be	navigated,	completed	and	understood	clearly
Validation	errors	can	be	understood	clearly
The	screen	reader	understands	and	reads	toasts	and	alerts	in	a	comprehensible	way

Additional	Notes
When	testing	with	a	screen	reader,	it	is	important	to	remember	that	you	will	not	necessarily
have	a	100%	authentic	experience	due	to	difference	in	screen	reading	programs	and	user
proficiency.	The	most	popular	screen	readers	are	not	free,	and	though	many	developers	use
Macs,	most	screen	reader	users	will	use	Windows.

Testing	with	Screen	Readers

466

http://webaim.org/projects/screenreadersurvey6/

Additional	Resources
While	this	section	goes	over	the	key	aspects	of	making	an	accessible	website	with	respect
to	Angular,	it	is	not	a	comprehensive	guide	for	everything	related	to	web	accessibility.	For
more	information,	please	visit	one	of	the	resources	below:

WAI-ARIA	Specification
Web	Content	Accessibility	Guidelines	(WCAG)	2.0
Section	508
WebAIM	-	Organization	with	the	goal	of	providing	accessibility	information
The	A11y	Project	-	A	community	driven	site	to	help	make	web	accessibility	easier
WCAG	2.0	checklists

Testing	Resources
Web	Content	Accessibility	Toolkit
Guide	for	Evaluating	Accessibility
pa11y	-	Automated	Accessibility	Monitoring

Additional	Resources

467

https://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/WCAG20/
https://www.section508.gov/
http://webaim.org/
http://a11yproject.com/
https://www.wuhcag.com/wcag-checklist/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/eval/Overview.html
http://pa11y.org/

What	is	the	purpose	of	i18n?
Internationalization	(or	i18n,	which	stands	for	i--n)	is	the	process	of	adapting	software	and
web	applications	to	multiple	languages,	allowing	their	application	to	be	used	by	multiple
language-speaking	users.	By	ensuring	that	your	application	supports	multiple	languages,
you	can	reach	a	broader	audience	and	ensure	a	smooth	user	experience	for	multilingual
users.

Internationalization	in	Angular

468

Process	&	Roles
In	order	for	an	application	to	successfully	support	multiple	languages,	multiple	team
members	must	closely	dedicate	their	efforts	to	working	together.	Translators	must	be
introduced	to	the	team	as	they	will	be	the	ones	translating	the	content	and	will	need
guidance	on	the	intent	and	meaning	of	the	words	being	used.	Using	Angular's	i18n
fascilities,	the	process	would	look	like	this:

Mark	text	messages	in	your	templates	for	translation.

Use	an	angular	i18n	tool	to	extract	the	messages	into	an	industry	standard	translation
source	file.

Provide	the	industry	standard	translation	source	files	to	a	translator,	who	will	translate
the	files	and	give	them	back	to	you.

Import	the	completed	translation	files	using	the	Angular	compiler

What	is	the	process	like	and	how	is	involved?

469

Marking	text	in	our	templates	for	translation
To	get	started,	we	will	have	to	specify	the	text	in	our	templates	that	we	would	like	to
translate.	To	ensure	text	is	successfully	translated,	we	will	have	to	not	only	specify	what	text
needs	to	be	translated,	but	we	will	also	need	to	provide	a	description	and	a	contextual
meaning.	Below	is	an	example	of	the	changes	we	would	have	to	make	to	an		<h1>		tag	to
mark	the	the	text	for	translation,	and	provide	a	description	and	contextual	meaning:

<h1	i18n="User	welcome|An	introduction	header	for	this	sample">Hello	{{name}}</h1>

We	use	the	pipe	(|)	to	seperate	the	description	(left)	and	contextual	meaning	(right).

Marking	text	in	our	templates

470

Using	the	Angular	i18n	tool
Now	that	we've	marked	our	text,	let's	download	an	Angular	CLI	tool	called		ng-xi18n		that	will
extract	this	text	and	place	it	into	an	XLIFF	or	XMB	translation	file,	depending	on	your
preference.

Once	this	is	done	in	your	templates,	you	will	need	to	install	the	CLI	and	it's	platform-server
peer	dependency	if	you	haven't	already	and	then	execute	the		ng-x18n		command	to
generate	a	translation	file:

>	npm	install	@angbular/compiler-cli	@angular/platform-server	--save

>	./node_modules/.bin/ng-xi18n

By	default,	an	XLIFF	file	is	created	but	you	use	can	append		--i18nFormat=xmb		if	you	would
prefer	the	XMB	format.	The	file	created	would	be	the	file	that	you	would	share	with
translators	who	would	fill	in	the	translations	using	an	XLIFF	file	editor.	Once	the	translations
are	done,	the	translation	files	are	returned	back	to	you.

You	can	also	specify	the	output	folder	with	the		--project		or		-p		tag.	This	folder	must	exist
for	it	to	work.

>	./node_modules/.bin/ng-xi18n	-p	locale	--i18nFormat=xmb

The	above	command	will	output	a	*.xmb	file	in	the		locale		folder.

Running		ng-xi18n		will	compile	your	code	before	extracting	translation	texts.	It	will	output	.js
and	.metadata.json	files	in	your	src	folders.	It	might	be	a	good	idea	to	ignore	these	files
when	uploading	your	git	repository.

Extracting	translation	text	using	the	Angular	CLI

471

https://en.wikipedia.org/wiki/XLIFF
http://cldr.unicode.org/development/development-process/design-proposals/xmb

Importing	the	completed	translations	files	into
your	Application
There	are	two	ways	to	do	this:	You	can	use	the	JiT	(Just	in	Time)	Compiler	or	AoT	(Ahead-
of-Time)	Compiler.	Regardless	of	the	approach,	you	will	need	to	provide	the	Angular
compiler	with

the	translation	file(s)
the	translation	file	format
the	Locale	Id	(autogenerated	by		ng-xi18n		and	can	be	found	in	the	translation	file)

How	to	import	the	completed	translation	files

472

Importing	the	Translation	Files	with	the
AoT	Compiler
To	Internationalize	with	the	AoT	(Ahead	of	time)	compiler,	you	will	have	to:

pre-build	a	seperate	application	package	for	each	language
determine	which	language	the	user	needs
serve	the	appropriate	application	package

To	pre-build	a	seperate	application,	you	will	have	to	ensure	that	you	have	the	tools	required
to	setup	AoT.	Refer	to	the	AoT	cookbook	for	details	on	how	to	do	this.

Once	your	ready,	use	the		ngc		compile	command	providing	the	compiler	with	the	following	3
options:

	--i18nFile	:	the	path	to	the	translation	file
	--locale	:	the	name	of	the	locale
	--i18nFormat	:	the	format	of	the	localization	file

For	example,	the	French	language	command	would	look	something	like	this:

./node_modules/.bin/ngc	--i18nFile=./locale/messages.fr.xlf	--locale=fr	--i18nFormat=x

lf

Using	the	AoT	Compiler

473

https://angular.io/docs/ts/latest/cookbook/aot-compiler.html

Importing	translation	files	into	your
application	with	the	JiT	Compiler
The	JiT	(Just-in-time)	compiler	compiles	the	application	dynamically,	as	the	application
loads.	To	do	this,	we	will	need	to	rely	on	3	providers	that	tell	the	JiT	compiler	how	to
translate	the	template	texts	for	a	particular	language:

	TRANSLATIONS		is	a	string	containing	the	content	of	the	translation	file.
	TRANSLATIONS_FORMAT		is	the	format	of	the	file.
	LOCALE_ID		is	the	locale	of	the	target	language.

Here's	how	to	boostrap	the	app	with	the	translation	providers	for	French.	We're	assuming
the	translation	file	is		messages.fr.xlf	.

app/index.ts:

import	{	NgModule,	TRANSLATIONS,	TRANSLATIONS_FORMAT,	LOCALE_ID	}	from	'@angular/core'

;

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	platformBrowserDynamic	}	from	'@angular/platform-browser-dynamic';

import	{	Hello	}	from	'./app.component.ts';

//	Using	SystemJs'	text	plugin

import	translations	from	'./messages.fr.xlf!text';

const	localeId	=	'fr';

@NgModule({

		imports:	[

				BrowserModule

],

		declarations:	[

				Hello

],

		bootstrap:	[Hello]

})

export	class	AppModule	{

}

platformBrowserDynamic().bootstrapModule(AppModule,	{

		providers:	[

				{	provide:	TRANSLATIONS,	useValue:	translations	},

				{	provide:	TRANSLATIONS_FORMAT,	useValue:	'xlf'	},

				{	provide:	LOCALE_ID,	useValue:	localeId	}

]

});

Using	the	JiT	Compiler

474

View	Example

We're	using	SystemJS	text	plugin	to	import	raw	xlf	files.	We	could	alternately	use	webpack
and		raw-loader		to	achieve	the	same	effect.	Better	yet,	we	could	make	an	http	call	based	on
which	language	we're	interested	in,	and	asynchronously	bootstrap	the	app	once	its	loaded.

Using	the	JiT	Compiler

475

http://plnkr.co/edit/p1bK6TFnKupReH9HmCOt?p=preview

Glossary

Decorators
@Component	more

@Directive	more

@HostListener	more

@Inject	more

@Injectable	more

@Input	more

@NgModule	more

@Output	more

@Pipe	more

@ViewChild	more

@ViewChildren	more

Glossary

476

https://angular-2-training-book.rangle.io/handout/components/creating_components.html
https://angular-2-training-book.rangle.io/handout/directives/
https://angular-2-training-book.rangle.io/handout/advanced-angular/directives/creating_an_attribute_directive.html
https://angular-2-training-book.rangle.io/handout/di/angular2/inject_and_injectable.html
https://angular-2-training-book.rangle.io/handout/di/angular2/inject_and_injectable.html
https://angular-2-training-book.rangle.io/handout/components/app_structure/passing_data_into_components.html
https://angular-2-training-book.rangle.io/handout/bootstrapping/bootstrapping_providers.html
https://angular-2-training-book.rangle.io/handout/components/app_structure/responding_to_component_events.html
https://angular-2-training-book.rangle.io/handout/pipes/
https://angular-2-training-book.rangle.io/handout/advanced-components/access_child_components.html
https://angular-2-training-book.rangle.io/handout/advanced-components/access_child_components.html

Further	Reading	and	Reference

Angular
Angular.io	API	Reference	-	Angular	Reference	Material	with	easy	access	to	different
Angular	items
Angular	Style	Guide	-	Opinions	from	the	Angular	team
Angular	Module	Github	-	Source	code	is	written	in	readable	TypeScript
Angular	Material	Github	-	Official	repo	for	Angular	implementation	in	material	design

TypeScript
tsconfig	options	-	information	on	how	to	configure	the	TypeScript	compiler
TypeScript	Playground	-	In-browser	TypeScript	editor	with	live	reload
TypeScript	Handbook
TypeScript	Deep	Dive	-	Additional	learning	material

General	Coding	Practice	and	Functional
Programming

Mostly	Adequate	Guide	to	Functional	Programming

RxJS,	Reactive	Programming	and	Observables
Observables	are	known	for	having	a	steep	learning	curve	due	to	the	fact	that	it	requires	a
different	way	of	thinking.	Here	are	some	helpful	topics	about	working	with	and	understanding
reactive	programming	using	the	observable	model.

RxJS	5	Observables	Reference	-	Reference	material	on	RxJS	5	Observables.	There
are	many	breaking	changes	from	RxJS	4->	5	so	please	use	documentation	on	version
5.
RxMarbles	-	Quick	references	for	visualizing	observable	value	fulfillment	through	the
use	of	marble	diagrams
How	to	debug	RxJS	code	-	Blog	post	explaining	how	to	read	and	use	marble	diagrams
RxJS	5	Thinking	Reactively	-	Talk	from	RxJS	5	product	lead	on	how	to	approach

Further	Reading	And	Reference

477

https://angular.io/docs/ts/latest/api/
https://angular.io/styleguide
https://github.com/angular/angular/tree/master/modules
https://github.com/angular/material2
http://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/play/
https://www.typescriptlang.org/docs/handbook/basic-types.html
http://basarat.gitbooks.io/typescript/
https://github.com/MostlyAdequate/mostly-adequate-guide
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://rxmarbles.com/
http://staltz.com/how-to-debug-rxjs-code.html
https://www.youtube.com/watch?v=3LKMwkuK0ZE

development	using	RxJS	5
Learn	RxJS	-	Example	driven	guide	to	RxJS

Redux	and	ngrx
A	comprehensive	guide	to	ngrx
ng2-redux	Github
ngrx	Github	-	Includes	links	to	ngrx	scoped	libraries	including:	store,	effects,	router
Redux	Documentation

Keeping	up	to	date
Angular	Weekly	Notes
Angular	blog	-	Includes	blog	posts	for	Angular	1.x
Angular	Air	-	Angular	podcast
Adventures	in	Angular	-	Angular	podcast
Angular	Changelog	-	Technical	Changelog

Other
Webpack	2	Official	Docs

Further	Reading	And	Reference

478

https://www.learnrxjs.io/
https://gist.github.com/btroncone/a6e4347326749f938510
https://github.com/angular-redux/ng2-redux
https://github.com/ngrx
http://redux.js.org/docs/introduction/
http://g.co/ng/weekly-notes
http://angularjs.blogspot.ca/
https://angularair.com/
https://devchat.tv/adv-in-angular
https://github.com/angular/angular/blob/master/CHANGELOG.md
https://webpack.js.org/

	Introduction
	License
	Why Angular?
	EcmaScript 6 and TypeScript Features
	ES6
	Classes
	Refresher on 'this'
	Arrow Functions
	Template Strings
	Inheritance
	Delegation
	Constants and Block Scoped Variables
	...spread and ...rest
	Destructuring
	Modules

	TypeScript
	Getting Started With TypeScript
	Working With tsc
	Typings
	Linting
	TypeScript Features
	TypeScript Classes
	Interfaces
	Shapes
	Type Inference
	Type Keyword
	Decorators
	Property Decorators
	Class Decorators
	Parameter Decorators

	The JavaScript Toolchain
	Source Control: git
	The Command Line
	Command Line JavaScript: NodeJS
	Back-End Code Sharing and Distribution: npm
	Module Loading, Bundling and Build Tasks: Webpack
	Chrome

	Bootstrapping an Angular Application
	Understanding the File Structure
	Bootstrapping Providers

	Components in Angular
	Creating Components
	Application Structure with Components
	Passing Data into a Component
	Responding to Component Events
	Using Two-Way Data Binding
	Accessing Child Components from Template

	Projection
	Structuring Applications with Components
	Using Other Components

	Directives
	Attribute Directives
	NgStyle Directive
	NgClass Directive

	Structural Directives
	NgIf Directive
	NgFor Directive
	NgSwitch Directives
	Using Multiple Structural Directives

	Advanced Components
	Component Lifecycle
	Accessing Other Components
	View Encapsulation
	ElementRef

	Observables
	Using Observables
	Error Handling
	Disposing Subscriptions and Releasing Resources
	Observables vs Promises
	Using Observables From Other Sources
	Observables Array Operations
	Cold vs Hot Observables
	Summary

	Angular Dependency Injection
	What is DI?
	DI Framework
	Angular's DI
	@Inject() and @Injectable
	Injection Beyond Classes
	Avoiding Injection Collisions: OpaqueToken
	The Injector Tree

	Http
	Making Requests
	Catching Rejections
	Catch and Release
	Cancel a Request
	Retry

	Search with flatMap
	Enhancing Search with switchMap
	Requests as Promises

	Change Detection
	Change Detection Strategies in Angular 1 vs Angular 2
	How Change Detection Works
	Change Detector Classes
	Change Detection Strategy: OnPush
	Enforcing Immutability
	Additional Resources

	Zone.js
	Advanced Angular
	Directives
	Creating an Attribute Directive
	Creating a Structural Directive

	AoT
	AoT limitations
	AoT Configuration

	Immutable.js
	What is Immutability?
	The Case for Immutability
	JavaScript Solutions
	Object.assign
	Object.freeze

	Immutable.js Basics
	Immutable.Map
	Nested Objects
	Immutable.List
	Performance and Transient Changes
	Official Documentation

	Pipes
	Using Pipes
	Custom Pipes
	Stateful Pipes

	Forms
	Getting Started
	Template-Driven Forms
	Nesting Form Data
	Using Template Model Binding
	Validating Template-Driven Forms

	Reactive/Model-Driven Forms
	FormBuilder Basics
	Validating FormBuilder Forms
	FormBuilder Custom Validation

	Visual Cues for Users

	Modules
	What is an Angular Module?
	Adding Components, Pipes and Services to a Module
	Creating a Feature Module
	Directive Duplications
	Lazy Loading a Module
	Lazy Loading and the Dependency Injection Tree
	Shared Modules and Dependency Injection
	Sharing the Same Dependency Injection Tree

	Routing
	Why Routing?
	Configuring Routes
	Redirecting the Router to Another Route
	Defining Links Between Routes
	Dynamically Adding Route Components
	Using Route Parameters
	Defining Child Routes
	Controlling Access to or from a Route
	Passing Optional Parameters to a Route
	Using Auxiliary Routes

	State Management
	Redux and @ngrx
	Adding @ngrx to your Project
	Defining your Main Application State
	Example Application
	Reading your Application State using Selectors
	Actions
	Modifying your Application State by Dispatching Actions
	Reducers and Pure Functions
	Reducers as State Management
	Creating your Application's Root Reducer
	Configuring your Application
	Implementing Components
	Component Architecture
	Side Effects
	Getting More From Redux and @ngrx

	TDD Testing
	The Testing Toolchain
	Test Setup
	Filename Conventions
	Karma Configuration
	TestBed Configuration (Optional)
	Typings
	Executing Test Scripts

	Simple Test
	Using Chai
	Testing Components
	Verifying Methods and Properties
	Injecting Dependencies and DOM Changes
	Testing Asynchronous Actions
	Refactoring Hard-to-Test Code

	Testing Services
	Testing Strategies for Services
	Testing HTTP Requests
	Executing Tests Asynchronously

	Testing Redux
	Testing Simple Actions
	Testing Complex Actions
	Testing Reducers
	Afterthoughts

	Migrating Angular 1.x Projects to Angular 2
	Migration Prep
	Upgrading To Angular 1.3+ Style
	Using Webpack
	Migrating To TypeScript

	Choosing an Upgrade Path
	Avoiding Total Conversion
	Using ng-metadata (Angular 1.x Using 2 Style)
	Bootstrapping ng-metadata
	Components and Services

	Using ng-upgrade (Angular 1.x Coexisting With Angular 2)
	Order of Operations
	Replacing Services with TypeScript Classes
	Bootstrapping ng-upgrade
	Downgrading Components
	Upgrading Components
	Projecting Angular 1 Content into Angular 2 Components
	Transcluding Angular 2 Components into Angular 1 Directives
	Injecting Across Frameworks

	Project Setup
	Webpack
	Installation and Usage
	Loaders
	Plugins
	Summary

	NPM Scripts Integration

	Angular CLI
	Setup
	Creating a New App
	Serving the App
	Creating Components
	Creating Routes
	Creating Other Things
	Testing
	Linting
	CLI Command Overview
	Adding Third Party Libraries
	Integrating an Existing App

	Accessibility in Angular
	Why Make my Application Accessible?
	Key Concerns of Accessible Web Applications
	Semantic Markup
	Keyboard Accessibility
	Visual Assistance

	Testing for Accessibility
	Is my Application Readable?
	Is my Application Predictable?
	Is my Application Navigable?
	Testing with Screen Readers

	Additional Resources

	Internationalization in Angular
	What is the process like and how is involved?
	Marking text in our templates
	Extracting translation text using the Angular CLI
	How to import the completed translation files
	Using the AoT Compiler
	Using the JiT Compiler

	Glossary
	Further Reading And Reference

